
Journal of Econometrics 234 (2023) 3–27

s

v
n
E

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

State-domain change point detection for nonlinear time series
regression
Yan Cui a,b,∗, Jun Yang c, Zhou Zhou d

a Institute for Advanced Study in Mathematics, Harbin Institute of Technology, China
b School of Mathematics, Jilin University, China
c Department of Statistics, University of Oxford, United Kingdom
d Department of Statistical Sciences, University of Toronto, Canada

a r t i c l e i n f o

Article history:
Received 23 May 2019
Received in revised form 21 November 2021
Accepted 22 November 2021
Available online 17 December 2021

Keywords:
Change-point detection
Nonlinear time series
Nonparametric hypothesis test
State domain

a b s t r a c t

Change point detection in time series has attracted substantial interest, but most of the
existing results have been focused on detecting change points in the time domain. This
paper considers the situation where nonlinear time series have potential change points
in the state domain. We apply a density-weighted anti-symmetric kernel function to the
state domain and therefore propose a nonparametric procedure to test the existence of
change points. When the existence of change points is affirmative, we further introduce
an algorithm to estimate the number of change points together with their locations.
Theoretical results of the proposed detection and estimation procedures are given and
a real dataset is used to illustrate our methods.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following state-domain nonlinear auto-regression

Xi = µ(Xi−1) + ϵi, (1)

where µ(·) is an unknown regression function, {ϵi} is a martingale difference sequence such that E[ϵi | (ϵi−1, ϵi−2, . . .)] = 0
almost surely. Special cases of Eq. (1) include threshold AR models (Tong, 1990), exponential AR models (Haggan and
Ozaki, 1981) and ARCH models (Engle, 1982), among others. Furthermore, Eq. (1) can be viewed as a discretized version
of the diffusion model

dXt = µ(Xt )dt + dM(t), (2)

where µ(·) is the instantaneous return or drift function, and {M(t)} is a continuous-time martingale. In the literature, the
pecial case of Model (2) with dM(t) = σ (Xt )dB(t) has been widely discussed to understand and model nonlinear temporal
systems in economics and finance, where B(t) denotes the standard Brownian motion and σ 2(·) is understood as the
olatility function. Among others, Stanton (1997), Chapman and Pearson (2000) and Fan and Zhang (2003) considered the
onparametric estimation of µ(·) and σ 2(·). Zhao (2011) addressed the model validation problem for Eq. (2). In particular,
q. (2) can be used to model the temporal dynamics of financial data with {Xt} being interest rates, exchange rates, stock

prices or other economic quantities. Among others, Zhao and Wu (2006) considered kernel quantile estimates of Eq. (2)
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or the exchange rates between Pound and USD. Liu and Wu (2010) constructed simultaneous confidence bands for µ(·)
nd σ (·) with the U.S. Treasury yield curve rates data. See also the latter papers for further references. Observe that we
llow the error process to be general martingale differences in (1) which significantly expands the applicability of our
heory and methodology in economic applications. As pointed out by one referee, conditional moment restrictions in
ynamic economic models routinely arise from Euler/Bellman equations in dynamic programming, which are martingale
ifferences. Furthermore, asset returns, due to the no-arbitrage theory, are (semi)martingales. Hence, their (demeaned)
eturns are martingale differences.

Throughout this article, following Chapter 6.3 of Fan and Yao (2003), we shall call (1) a state-domain nonlinear
egression model. The term ‘‘state domain’’ originated from the celebrated state-space models (e.g. Kalman (1960)
nd Shumway and Stoffer (2000, Chapter 6)) where the dynamics of a sequence of state variables ({Xi} in Eq. (1)) are
riven by a group of control variables (ϵi in Eq. (1)) through the nonlinear state Equation (1). Therefore in this article the
erm ‘‘state domain’’ refers to the Euclidean space in which the variables on the axes are the state variables. Observe that
he state-domain nonlinear regression (1) aims to characterize the relationship between Xi and past values (states) of the
time series through a discretized stochastic differential equation. On the contrary, time-domain nonlinear regression (see
e.g. Fan and Yao (2003), Chapter 6.2)

Xi = f (i/n) + εi, i = 1, 2, . . . , n (3)

with E[εi] = 0 describes the relationship between Xi and time.
To date, most investigations on the nonparametric inference procedure of Eq. (1) are based on the assumption that

the underlying regression function µ(·) is continuous, which may cause serious restrictions in many real applications. In
fact, in parametric modeling of nonlinear time series, various choices of µ(·) with possible discontinuities have drawn
much attention in the literature. One of the most prominent examples is the threshold model proposed by Tong and
Lim (1980), in which regime switches are triggered by an observed variable crossing an unknown threshold. Also, AR
model with regime-switch controlled by a Markov chain mechanism was introduced by Tong (1990). In economics, the
expanding phase and contracting phase are not always governed by the same dynamics, see Tiao and Tsay (1994), Durlauf
and Johnson (1995), McConnell and Perez-Quiros (2000) and other references therein. As a result, the occurrence of abrupt
changes in the state-domain regression function µ(·) is common and detecting as well as estimating them are of vital
importance. Motivated by this, in the current paper we focus on the situation where the regression function µ(·) is piece-
ise smooth on an interval of interest T = [l, u] with a finite but unknown number of change points. More precisely,
here exist l = a0 < a1 < · · · < aM < aM+1 = u such that µ(·) is smooth on each of the intervals [a0, a1), . . . , [aM , aM+1];
that is, on the interval [l, u]

µ(x) =

M∑
j=0

µj(x)1(aj ≤ x < aj+1), (4)

where M is the total number of change points. Throughout this article, we assume M is fixed.
To our knowledge, there exist no results on change point detection of the state-domain regression function µ(·) in

the literature. The purpose of this paper is twofold. First we want to test whether µ(x) is smooth or discontinuous on
the interval [l, u]; that is to test the null hypothesis H0 : M = 0 of Eq. (4). By sliding a density-weighted anti-symmetric
kernel through the state domain, we shall suggest a nonparametric test statistic and non-trivially apply the discretized
multivariate Gaussian approximation result of Zaitsev (1987) to establish its asymptotic distribution. Additionally, the
Gaussian approximation results also directly suggest a finite sample simulation-based bootstrapping method which
improves the accuracy of the test in practical implementations. Second, if M ≥ 1, we reject the null hypothesis and
subsequently want to locate all the change points. In this case, we propose an estimation procedure and establish the
corresponding asymptotic theory on the accuracy of the estimators. Finally, the above theoretical results are of general
interest and could be used for a wider class of state-domain change point detection problems.

There is long-standing literature in statistics discussing jump detection of the time-domain nonlinear regression model
(3) where occasional jumps occur in an otherwise smoothly changing time trend f (·). It is impossible to show a complete
reference here and we only list some representative works. Müller (1992) and Eubank and Speckman (1994) employed a
kernel method to estimate jump points in smooth curves. Wang (1995) suggested using wavelets and provided a review
of jump-point estimation. Two-step methods were considered by Müller and Song (1997) and Gijbels et al. (1999) to
study the asymptotic convergence properties of the jumps. Later, Gijbels et al. (2007) suggested a compromise estimation
method which can preserve possible jumps in the curve. Zhang (2016) considered the situation where the trend function
allows a growing number of jump points. In econometrics, there is a significant body of literature discussing time-domain
jump detection in jump diffusion models; see for instance Bollerslev et al. (2008), Jiang and Oomen (2008), Lee and
Mykland (2012) and the references therein. On the other hand, it is well known that state-domain asymptotic theory is
very different from that of the time domain (see, for instance Fan and Yao (2003), Chapter 6). In our specific case, uniform
asymptotic behavior of our test statistic on [l, u] is arguably more difficult to establish than the corresponding problem
in the time domain. In the current paper, we establish that, unlike time-domain change point detection problems of (3)
where the long-run variances of the process are of crucial importance in the asymptotics, state-domain change point
detection theory of (1) heavily depends on the conditional variances and densities of the process {X }. We also provide
i
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n estimation procedure using simulated critical values to detect and locate the change points. We show that, when the
ump sizes have a fixed and positive lower bound, the method will asymptotically detect all the change points with a
reassigned probability and an accuracy cn which is much smaller than 1/

√
n, where n is the length of the time series.

The rest of the paper is organized as follows. In Section 2, we introduce the model framework and some basic
ssumptions. Section 3 contains our main results, including a nonparametric test to determine the existence of change
oints and a procedure for estimating the number of change points together with their locations. Practical implementation
ased on a bootstrap procedure and a suitable method for bandwidth selection are discussed in Section 4. Section 5 reports
ome simulation studies. A real data application of daily COVID-19 infections in Germany is carried out in Section 6.
ection 7 contains all the proofs of the theoretical results in Section 3 and additional proofs are deferred to Section 8.

. Model formulation and basic assumptions

Throughout this paper, we use the following notations. A random vector X ∈ Lp if ∥X∥p := (E|X |
p)1/p < ∞. For

wo random variables U and V , FU |V (·) denotes the conditional distribution function of U given V and fU |V (·) denotes the
onditional density. Furthermore, for function g with E|g(U)| < ∞, we let E(g(U) | V ) :=

∫
g(x)dFU |V (x) be the conditional

xpectation of g(U) given V . Finally, 1 stands for the indicator function.
Assume that the process {ϵi} is stationary and causal. Following Wu (2005), we assume that {ϵi} is a Bernoulli shift

rocess such that

ϵi = G∗(ξi), (5)

here the function G∗ is a measurable function such that the process {ϵi} exists and ξi = (· · · , ηi−1, ηi) is a shift process,
here {ηi} are independent and identically distributed (i.i.d.) random variables. Furthermore, {ϵi} is a martingale difference
equence satisfying E[ϵi | (ϵi−1, ϵi−2, . . .)] = 0 almost surely. From Eq. (5), one can interpret the transform G∗ as the
nderlying physical mechanism, with ξi and G∗(ξi) being the input and output of the system, respectively.
Similarly, we assume

Xi = G(ξi),

here G is a measurable function such that Xi exists. To facilitate the main results, we first introduce the time series
ependence measures in Wu (2005) associated with Xi and ϵi. Assume X ∈ Lp, and let

X ′

n = G(ξ ′

n), ξ ′

n := (ξ−1, η
′

0, η1, . . . , ηn),

here X ′
n is a coupled process of Xn with η0 replaced by an i.i.d. copy η′

0. Then, we define the physical dependence measures
f Xi as

θn,p = ∥Xn − X ′

n∥p.

et θn,p = 0 if n < 0. Thus for n ≥ 0, θn,p measures the dependence of the output G(ξn) on the single input η0. We refer
o Wu (2005) for more details on the physical dependence measures.

Similarly, we define the physical dependence measures for the errors as

θ∗

n,p = ∥ϵn − ϵ′

n∥p,

here ϵ′
n = G∗(ξ ′

n). Let θ
∗
n,p = 0 if n < 0.

Suppose that {Xi}
n
i=1 is observed. Recall H0 : M = 0 and we aim to test the null hypothesis that the regression function

s smooth. To this end, we introduce a density-weighted anti-symmetric kernel function K̃n, which is defined by

K̃n(X, x, b) :=
w∗

n(x, b)K
( X−x

b

)
− wn(x, b)K ∗

( X−x
b

)
wn(x, b)w∗

n(x, b)
,

where K (·) is a kernel function supported on S = [0, 1] with
∫
S K (u)du = 1 and K ∗(u) := K (−u). The data-dependent

eights wn(x, b) and w∗
n(x, b) are defined by

wn(x, b) :=
1
nb

n∑
i=1

K
(
Xi − x

b

)
, w∗

n(x, b) :=
1
nb

n∑
i=1

K ∗

(
Xi − x

b

)
,

here b = bn is the bandwidth satisfying b → 0 and nb → ∞. Note that wn(x, b) and w∗
n(x, b) are one-sided kernel

density estimators. Hence K̃n(X, x, b) can be approximated by [K ( X−x
b )− K ∗( X−x

b )]/f (x), where f (x) is the density function
f Xi. Observing that K (x)−K ∗(x) is an anti-symmetric function, we then call K̃n(X, x, b) a density-weighted anti-symmetric
ernel function. By sliding this kernel function K̃n through the state domain, we are able to test whether µ(x) has change
oints. More specifically, the quantity

∑n
k=2 K̃n(Xk−1, x, b)Xk/nb is a boundary kernel estimation of µ(x+) −µ(x−), where

(x+) and µ(x−) are the right and left limits of µ(·) at x. Thus, if x is a continuous point of µ(·), this quantity will be
pproximately zero at x. However, if µ(·) is discontinuous at x, the quantity will be approximately equal to the jump size
f µ(·) at x. To establish our first main result, we need the following regularity conditions:
5
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(a) There exist 0 < δ2 ≤ δ1 < 1 such that n−δ1 = O(b) and b = O(n−δ2 ).
(b) Assume E|ϵi|

p < ∞ where p > 2/(1 − δ1).
(c) For the same p defined in Condition (b), assume that Xi ∈ Lp, θn,p = O(ρn), and θ∗

n,p = O(ρn) for some 0 < ρ < 1.
(d) The density function f of Xi is positive on [l − ϵ, u + ϵ] for some ϵ > 0 and there exists a constant B < ∞ such

that

sup
x

[
|fXn|ξn−1 (x)| + |f ′

Xn|ξn−1
(x)| + |f ′′

Xn|ξn−1
(x)|
]

≤ B, a.s.

(e) K (·) is differentiable over (0, 1), the right derivative K ′(0+) and the left derivative K ′(1−) exists and
sup0≤u≤1|K ′(u)| < ∞. The Lebesgue measure of the set {u ∈ [0, 1] : K (u) = 0} is zero. Furthermore, K (0) =

K (1) = 0, K ′(0) > 0 and
∫ 1
0 uK (u)du = 0.

or the above regularity conditions, Condition (a) specifies the allowable range of the bandwidth. Condition (b) puts
mild moment restriction on ϵi. Condition (c) requires that the quantities θn,p and θ∗

n,p satisfy the geometric moment
ontraction (GMC) property. The GMC property is preserved in many linear and nonlinear time series models such as the
RMA models and the ARCH and GARCH models; see Shao and Wu (2007) for more discussions. Furthermore, denote
n :=

∑n
i=0 θi,2, which measures the cumulative dependence of X0, . . . , Xn on η0. Then if Condition (c) holds, it is easy to

ee that Θ∞ < ∞ which indicates short-range dependence of {Xi}. With Condition (d), we require that the density and
conditional density of Xi exist and are bounded. Moreover, f has bounded derivatives up to the second order. Condition (e)
puts some restrictions on the smoothness and order of the kernel function K . In particular,

∫ 1
0 uK (u)du = 0 indicates that

is a second-order kernel which has both positive and negative parts on [0, 1].

3. State-domain change point detection and estimation

In this section, we propose a test on the existence of change points in µ(·) and an algorithm to estimate the number
nd locations of the change points when µ(·) is discontinuous.

.1. Test for the existence of change points

With the foregoing discussion, we introduce a nonparametric statistic based on the density-weighted anti-symmetric
ernel to test whether model Eq. (1) has change points in the state domain regression function µ(·) on [l, u]. By proper
caling, our test statistic is defined as

tn(x) :=

√
f (x)
σ (x)

1
nb

n∑
k=1

K̃n (Xk−1, x, b) Xk,

where σ 2(x) = E[ϵ2i |Xi−1 = x]. In practice, since f (·) and σ (·) are unknown, we use the kernel density estimator fn(x) and
Nadaraya–Watson (NW) estimator σ 2

n (x) to replace f (x) and σ 2(x), respectively. The kernel density estimator is given by

fn(x) =
1
nh

n∑
k=2

W
(
Xk−1 − x

h

)
,

where W (·) is a general kernel function with W (·) ≥ 0 and
∫
W (u)du = 1, h = hn is the bandwidth sequence satisfying

→ 0 and nh → ∞. Let ê2k = [Xk − µn(Xk−1)]2 be the square of the estimated residuals, where

µn(x) =
1

nhfn(x)

n∑
k=2

W
(
Xk−1 − x

h

)
Xk

is the NW estimator of µ(·), then the NW estimator of σ 2(x) is given by

σ 2
n (x) =

1
nhfn(x)

n∑
k=2

W
(
Xk−1 − x

h

)
ê2k .

The following remark provides the uniform consistency of the estimated density and conditional variance functions.

Remark 3.1. Under Condition (a) for both bandwidths h and b with 0 < δ1 < 1/4, Condition (c), Condition (d), and
Condition (e), we have

Efn(x) − f (x) = f ′′(x)h2ψW + o(h2),

where ψW :=
∫
u2W (u)du/2 and

sup |fn(x) − f (x)| = OP

(
(log n)3
√ + h2 log n

)
.

x nh
6
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imilarly, for σ 2
n (x), under the conditions of Theorem 3.2, we also have

sup
x

⏐⏐σ 2
n (x) − σ 2(x)

⏐⏐ = OP

(
(log n)3
√
nh

+ h2 log n
)
.

See Section 8.1 for the proof. ◁

Let fϵ(·) be the density function of ϵi and λK =
∫
K 2(x)dx. We have the following main result on the asymptotic

roperties of the proposed test statistic.

heorem 3.2. Let l, u ∈ R be fixed. Recall the piece-wise formulation of Eq. (4), let T ϵj and T ϵ be the ϵ-neighborhoods
of the intervals Tj = [aj, aj+1) and T = [l, u], respectively. Let Ta = {aj} be the collection of the change points, T ϵa be the
ϵ-neighborhood of Ta. Assume that Condition (a)–Condition (e) hold with fϵ(·), σ (·) ∈ C3(T ϵ), µj(·) ∈ C3(T ϵj ) for some ϵ > 0
nd b satisfies

0 < δ1 < 1/3, 0 < δ2 ≤ 1/4, nb9 log n = o(1),

hen

P

(√
nb
2λK

sup
x∈T∩(Tba )c

|tn(x)| − dn ≤
z

(2 log b̄−1)
1
2

)
→ e−2e−z

,

here b̄ := b/(u − l) and

dn := (2 log b̄−1)
1
2 +

1

(2 log b̄−1)
1
2
log

√
K2

√
2π

with K2 :=
∫ 1
0 (K

′(u))2du/λK .

roof. See Section 7.1. □

Theorem 3.2 is a general result which establishes the asymptotic theory of the test statistic. In practical implementation,
e will use the density estimates fn(x) and variance estimates σn(x) instead of f (x) and σ (x) to calculate tn(x) as discussed
efore. Therefore, we have the following corollary.

orollary 3.3. Denote t∗n (x) =

√
fn(x)
σn(x)

1
nb

∑n
k=1 K̃n (Xk−1, x, b) Xk. Under the conditions of Theorem 3.2 and further assume the

bandwidth h ≤ b, then the asymptotic result of Theorem 3.2 holds for t∗n (x); this is

P

(√
nb
2λK

sup
x∈T∩(Tba )c

|t∗n (x)| − dn ≤
z

(2 log b̄−1)
1
2

)
→ e−2e−z

.

Note that in Corollary 3.3, we have added the assumption h ≤ b with the purpose of ensuring the consistency of fn(x)
and σn(x) on T ∩ (T b

a )
c . When there is no change point in µ(·), we have similar results as shown in the following remark,

which suggests that under the null hypothesis, after proper scaling and centering, our test statistic converges to a Gumbel
distribution asymptotically.

Remark 3.4. Assume H0 : M = 0 holds. We further assume that f (·), σ (·) ∈ C3(T ϵ) and the remaining conditions of
Corollary 3.3 hold. Then, Ta = ∅, T b

a = ∅, which implies T ∩ (T b
a )

c
= T . Therefore, the previous theorem reduces to

P

(√
nb
2λK

sup
x∈T

|t∗n (x)| − dn ≤
z

(2 log b̄−1)
1
2

)
→ e−2e−z

. ◁

Denote the jump-size of µ(·) at ai as ∆i; that is, ∆i := |µ(ai+) − µ(ai−)|. Next, we consider the alternative hypothesis
a : M ≥ 1 with ∆i ≥ ∆̃ > 0. When Ha holds true, it is easy to see that the proposed test has an asymptotic power 1 as
→ ∞. In other words, with some preassigned level α ∈ (0, 1) and as n → ∞, we have

P

(
sup
x∈T

|tn(x)| ≥

√
2λK
nb

[
dn −

log{log(1 − α)−1/2
}

(2 log b̄−1)1/2

])
→ 1.

Once the null hypothesis of no change point is rejected, one would be interested in detecting the number of change points
together with their locations, which we discuss in Section 3.2.
7
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.2. Change-point estimation

Suppose there exist a fixed number M of change points on [l, u], which are denoted by l < a1 < · · · < aM < u,
ith the minimum jump size min1≤i≤M∆i ≥ ∆̃n > 0. In this paper, we assume ∆̃n = O(1) which is allowed to decrease
ith n. The idea for estimating the number and locations of the change points is to search for local maximas of |tn(x)|
hich exceed the critical value of the test. To be more specific, we propose in the following a procedure for change point
stimation.

• For a fixed level α, perform the bootstrap procedure described in Section 4.1 to determine the critical value, say Cn,α .
• Set T1 := (l, u).
• Starting from the interval T1, find the largest x of |tn(x)| that exceeds the critical value and denote its location as â(1),

then rule out the interval [â(1) − b, â(1) + b] from T1 to get T2 := T1 ∩ [â(1) − b, â(1) + b]c .
• Repeat the previous step until all significant local maximas are found. In other words, |tn(x)| on the remaining

intervals are all below Cn,α .
• Denote the number of detected change points by M̂ and re-order the estimated change points as l < â1 < · · · <

âM̂ < u.

The following theorem provides an asymptotic result for M̂ and âi.

heorem 3.5. Under the conditions of Theorem 3.2, we further assume that K ′(·) is differentiable over (0, 1) with K ′(1) = 0,
he right derivative K ′′(0+) and the left derivative K ′′(1−) exist and sup0≤u≤1|K ′′(u)| < ∞. The Lebesgue measure of the set

u ∈ [0, 1] : K ′(u) = 0} is zero. If
√

log n
nb = o(∆̃n) then for any given level α, we have

P
({

M̂ = M
}

∩

{
max
1≤i≤M

|âi − ai| < cn

})
→ 1 − α,

for any cn such that 1/cn = O
(
∆̃n

√
n

b log n

)
roof. See Section 7.2. □

Theorem 3.5 reveals that for any given small probability α, with asymptotic probability 1−α, our proposed procedure
ill correctly estimate all the change points with an accuracy cn. It is important to mention that when ∆̃n = ∆̃ > 0,
hat is, when the jump sizes have a fixed lower bound, the smallest order for cn is

√
b log n/n, which is smaller than

−1/2. It can also be seen as a product of
√
log n and the optimal convergence rate (

√
b/n) of time-domain change-point

stimators established in Müller (1992). Hence, we conjecture that our rate cn is nearly optimal for state-domain change
point detection.

4. Practical implementation

4.1. The bootstrap procedure

It is well known that the convergence rate of the Gumbel distribution in Theorem 3.2 is slow. As a result, a very
large sample size would be needed for the approximation to be reasonably accurate. To overcome this issue, we propose
a simulation-based bootstrap procedure to improve the finite-sample performance of the proposed test. The bootstrap
procedure is as follows.

• Generate i.i.d. standard normal random variables Uk, k = 0, . . . , n.
• Compute the quantity Π∗

n defined in Eq. (6) for many times and calculate its (1 − α)th quantile as the critical value
of our test.

For the proposed boostrap procedure, we have the following theoretical results which shows that, with proper scaling
and centering, Π∗

n has the same asymptotic Gumbel distribution.

Proposition 4.1. Denote Πn = supx∈T |t∗n (x)| and

Π∗

n = sup
x∈T

⏐⏐⏐⏐⏐
√
g(x)
nb

n∑
k=1

K̃n(Uk−1, x, b)Uk

⏐⏐⏐⏐⏐ , (6)

where {Uk}
n
k=0 are i.i.d. standard normal random variables and g(x) is its density. Assume H0 : M = 0, Condition (a),

Condition (e) hold and b satisfies

0 < δ < 1/3, 0 < δ ≤ 1/4, nb9 log n = o(1).
1 2

8
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hen we have

P

(√
nb
2λK

Π∗

n − dn ≤
z

(2 log b̄−1)
1
2

)
→ e−2e−z

, as n → ∞.

Proposition 4.1 shows thatΠ∗
n andΠn have the same asymptotic Gumbel distribution with proper scaling and centering

nder the null hypothesis. Therefore, the (1−α)th quantile ofΠn can be estimated consistently by calculating the empirical
1−α)th quantile Cn,α ofΠ∗

n with a large number of replications by the bootstrap procedure. We reject the null hypothesis
t level α ∈ (0, 1) if Πn > Cn,α . When implementing the procedure described in Section 3.2 for estimating the change
oints, we also suggest using Cn,α to find the detection region. Our numerical experiments suggest that the bootstrap
ethod yields more accurate results than those based on the asymptotic limiting distribution under small or moderate
ample sizes.

.2. Bandwidth selection

The bandwidth used in fn(x) can be chosen based on classic bandwidth selectors for nonparametric kernel density
stimation. However, the choice of bandwidth b for test statistic t∗n (x) and h for the estimated variance σ 2

n (x) can be
uite nontrivial and are usually of practical interest. In this paper, we adopt the standard leave-one-out cross-validation
riterion for bandwidth selection suggested by Rice and Silverman (1991):

CV(b) =
1
n

n∑
k=1

[
Xk+1 − µ(−k)

n (Xk)
]2
,

CV(h) =
1
n

n∑
k=1

[
(Xk+1 − µn(Xk))2 − σ 2(−k)

n (Xk)
]2

where µ(−k)
n (Xk) and σ

2(−k)
n (Xk) are the kernel estimators of µ and σ 2 computed with all measurements with the kth subject

deleted, respectively. For example, a cross-validation bandwidth b̂ can be obtained by minimizing CV(b) with respect to
b, i.e., b̂ = argminb∈B CV(b), where B is the allowable range of b. The bandwidth selection for h is similar.

5. Simulation study

In this section, we carry out Monte Carlo simulations to examine the finite-sample performances of our proposed test
and estimator. Throughout the numerical experiments, the Epanechnikov kernel W (x) = 0.75(1 − x2)1(|x| ≤ 1) is used
or estimating the density and conditional variances. On the other hand, we adopt the higher-order kernel function in the
orm K (x) = b[W̃ (x)−aW̃ (

√
ax)] in the expression of K̃n, where W̃ (x) is the kernel function on [0,1] by shifting and scaling

W (x). From Theorem 3.2, one can see that the power of our test increases as λK decreases. As a result, we aim to maximize
the quantity Q (a, b) =

∫
∞

0 K (x)dx
√∫

∞

0 K2(x)dx
with the constraints

∫
∞

0 K (x)dx = 1 and
∫

∞

0 xK (x)dx = 0 to choose a and b. It turns out

hat Q (a, b) is maximized at a = 0.34 and b =
2

√
0.34−0.34

. Hence, we will use K (x) =
2

√
0.34−0.34

[W̃ (x) − 0.34W̃ (
√
0.34x)]

in our simulations and data analysis.

5.1. Accuracy of bootstrap

We run Monte Carlo simulations to study the accuracy of the proposed bootstrap procedure for finite samples
n = 200, 500 and 800. Here, we aim to test the null hypothesis H0 of no change point in the regression function. The
number of replications is fixed to be 1000 and the number of bootstrap samples is B = 2000 at each replication.

To guarantee the stationarity of the process {Xi}, |µ(x)| is required to be less than one (Fan and Yao, 2003, Section 2.1).
First, we consider Model A listed below to investigate the robustness of our testing procedure with respect to various levels
of persistence in the data generating process. Additional four state-domain nonlinear models (Models B–E listed below)
where µ(·) is of various shapes are further investigated for the accuracy of our test. In our simulations the martingale
difference process ϵi = σ (Xi−1)ϵ∗

i with σ 2(x) = E(ϵ2i |Xi−1 = x) and ϵ∗

i
i.i.d.
∼ N (0, 1). Note that the error processes {ϵi}

are specified via different conditional variance functions σ 2(x) in Models A–D. On the other hand, in Model E we set
ϵi = 0.5ηi(ηi−7 + 1.5) where ηi

i.i.d.
∼ N (0, 1) so that {ϵi} has a period of 7 which matches the data generating process

observed in the empirical data example in Section 6.

• Model A:

µ(x) =

⎧⎨⎩
κ1x3, |x| ≤ 1,
κ1, x > 1,

−κ1, x < −1,

9
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Table 1
Simulated Type I error rates for Model A with the first order ADCF of the model.
Model A κ1 0.2 0.4 0.6 0.8

R(1) 0.240 0.321 0.412 0.523

α = 0.05
n = 200 0.046 0.055 0.064 0.067
n = 500 0.048 0.052 0.060 0.065
n = 800 0.053 0.049 0.050 0.065

α = 0.1
n = 200 0.103 0.109 0.132 0.131
n = 500 0.096 0.092 0.119 0.138
n = 800 0.099 0.092 0.109 0.126

Table 2
Simulated Type I error rates for Model B–E with the first and seventh order ADCF of Model E.

Model B C D E

α = 0.05
n = 200 0.040 0.044 0.050 0.060 R(1)
n = 500 0.066 0.041 0.054 0.054 0.195
n = 800 0.056 0.051 0.057 0.054

α = 0.1
n = 200 0.085 0.106 0.124 0.105 R(7)
n = 500 0.102 0.092 0.114 0.092 0.258
n = 800 0.093 0.101 0.112 0.095

σ (x) = 1.5e−0.5x2 ,

where κ1 = 0.2, 0.4, 0.6, 0.8 represents various levels of temporal dependence in the series.
• Model B:

µ(x) = 0.2e−0.5x2 , σ (x) =
1.5ex

1 + ex
.

• Model C:

µ(x) =
0.3ex

1 + ex
,

σ (x) =

{
0.7(1 + x2), |x| ≤ 1,
1.4, otherwise.

• Model D:

µ(x) = 0.8 sin(x), σ (x) = 1.

• Model E:

µ(x) = 0.5 cos(x).

Note that the regression functions µ(·) in Models A–E are all continuous. At nominal significance levels α = 0.05
and 0.1, the simulated Type I error rates for sample sizes n = 200, 500 and 800 are reported in Tables 1–2 for Model A
and Models B–E, respectively. To measure the strength of the nonlinear temporal dependence, we will employ the auto-
distance correlation function (ADCF) investigated in Zhou (2012). In Table 1, we illustrate the first order ADCF (denoted
by R(1)) for Model A. Meanwhile, for Model E the first order and the seventh order ADCF are listed in Table 2. One can
see that the performance of our testing procedure is reasonably accurate for different sample sizes across the models and
the accuracy improves as the sample size increases. On the other hand, from Table 1, we find that as the dependence of
the process becomes stronger, the Type I errors tend to be less accurate, but are still in a reasonable range.

5.2. Power of hypothesis testing

In this subsection, we consider the simulated power of our test under various alternatives. Recall the representation
ϵi = σ (Xi−1)ϵ∗

i with ϵ∗

i
i.i.d.
∼ N (0, 1). Here, we consider the following two types of alternatives with a change point of size

δ :

• Model F1:

µ(x) =

{
0.5e−x2 , x < 0,
0.5e−x2

− δ, x ≥ 0,

σ (x) = e−0.5x2 .
10
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Fig. 1. Simulated rejection rates for testing change point for Model F1 .

Fig. 2. Simulated rejection rates for testing change point for Model F2 .

• Model F2:

µ(x) =

{
0.3 − δ, x < 0,
0.3, x ≥ 0,

σ (x) =
ex

1 + ex
.

We let the jump size δ range from 0 to 1.6 for Model F1 and from 0 to 1 for Model F2 at location x = 0. For each
odel, we investigate the empirical sensitivity of our testing procedure under nominal levels 0.05 and 0.1 with sample
ize n = 800 based on 1000 replications. The simulated power curves for the above models are plotted in Figs. 1 and 2,
espectively. According to the plots, the statistical power of the proposed testing procedure increases reasonably fast as
increases. On the other hand, we also observe that our test shows a slower speed of increase at near alternatives when
ompared with ‘‘classic’’ power curves of parametric tests. We believe that part of the reason is that our nonparametric
est aims at detecting alternatives from a large class of discontinuous functions while tests tailored to some parametric
odels (such as the threshold model) target a specific class of alternative functions. Therefore our test is expected to be

ess sensitive to small deviations from the null compared to those parametric tests. See also Section 5.4 for a numerical
xperiment that compares the sensitivity of our testing procedure with that of a parametric test of the threshold model.
11
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Table 3
Accuracy in estimating the change-point locations and the percentage of correctly estimating the number
of change points.
Case 1 n MADE MSE Percentage

a1 = 0
200 0.0451 0.0055 90.51%
500 0.0195 0.0014 93.77%
800 0.0134 0.0006 94.51%

Case 2 n MADE MSE Percentage

a1 = −0.3 200 0.0519 0.0059 81.82%a2 = 0 0.0757 0.0069

a1 = −0.3 500 0.0508 0.0043 86.59%a2 = 0 0.0496 0.0042

a1 = −0.3 800 0.0386 0.0028 89.80%a2 = 0 0.0362 0.0024

Note: true change point a1 = 0 for Case 1; true change points a1 = −0.3 and a2 = 0 for Case 2; MADE:
mean absolute deviation error; MSE: mean squared error.

.3. Accuracy in estimating the number of change points and their locations

Utilizing the algorithm listed in Section 3.2, in this subsection we focus on estimating the number of change points
nd their locations based on 1000 realizations with sample sizes n = 200, 500 and 800. In the simulations, we let the
rror process {ϵ∗

i }
n
i=1 be i.i.d. standard normal random variables and consider the following two cases:

• Case 1: A single change point.

µ(x) =

{
0.7e−x2 , x < 0,
0.7e−x2

− 1.6, x ≥ 0,

σ (x) = e−0.5x2 .

• Case 2: Two change points.

µ(x) =

⎧⎨⎩
0.8x + 0.8, x < −0.3,
−1, −0.3 ≤ x < 0,
−0.2x + 0.5, x ≥ 0,

σ (x) =
ex

1 + ex
.

The estimates of the locations of change points are compared in terms of their mean absolute deviation errors (MADE)
and mean squared errors (MSE). We also report the simulated percentage of correctly estimating the number of change
points. The results are listed in Table 3. One can see from Table 3 that the values of MADE and MSE are all quite small,
which suggests the estimated locations by our approach are fairly accurate. Furthermore, as the sample size increases,
the percentage of correctly estimating the number of change points increases in both cases.

5.4. Comparison to threshold testing and estimation in threshold model

In this subsection, we compare the accuracy and sensitivity of our nonparametric method with existing threshold
testing and estimation methods for the classic threshold AR (TAR) model proposed by Tong and Lim (1980) when the TAR
model is indeed the underlying data generating mechanism. We consider the following two-regime TAR(1) model

Xi =

⎧⎨⎩
0.5(Xi−1 + 1) + ϵi, Xi−1 < 0.25,

κ2(Xi−1 + 1) + ϵi, Xi−1 ≥ 0.25,

here κ2 = 0.5, 0.3, 0.1,−0.1,−0.3,−0.5 and the error process ϵi
i.i.d.
∼ N (0, 0.752). First, we are interested in comparing

he accuracy and power of our nonparametric test with the parametric F-test of threshold nonlinearity proposed in Tsay
1989). Table 4 shows the testing results for nonlinearity of the model based on both the parametric and nonparametric
ethods, in which the sample size is n = 800 and the number of bootstrap samples is B = 2000.
We observe that the nonparametric method has slightly higher powers when the scale coefficient κ2 changes slightly

from 0.5. However, as κ2 becomes 0.1 or smaller, the parametric method has higher powers than the nonparametric
method.
12
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Table 4
Simulated rejection rates for testing change point with TAR(1) model.
κ2 0.5 0.3 0.1 −0.1 −0.3 −0.5

Para. α = 0.05 0.042 0.175 0.831 0.904 1 1
α = 0.1 0.095 0.282 0.897 0.906 1 1

Nonpara. α = 0.05 0.069 0.256 0.406 0.646 0.792 0.910
α = 0.1 0.131 0.378 0.540 0.761 0.861 0.940

Table 5
Estimation accuracy for change-point locations.

n MADE MSE

Nonpara.
200 0.1055 0.0143
500 0.0519 0.0066
800 0.0367 0.0041

Para.
200 0.0340 0.0027
500 0.0178 0.0012
800 0.0098 0.0004

In addition, we compare the accuracy in change point estimation. We study the following TAR(1) model,

Xi =

⎧⎨⎩
2
3 (Xi−1 + 1) + ϵi, Xi−1 < 0.25,

−
2
3 (Xi−1 + 1) + ϵi, Xi−1 ≥ 0.25,

where ϵi
i.i.d.
∼ N (0, 0.752). Note that parametric estimation of the threshold value of the above two-regime TAR(1) process

can be done via the R function uTAR in the NTS package (we refer to Liu et al. (2020) for more details). The simulated
MADEs and MSEs are listed in Table 5. From Table 5, one can see that both methods provide relatively accurate estimates
of the locations of change point (threshold). The parametric method shows more accurate estimation results comparing
with those of the nonparametric method. With the above observations, it can be seen that the parametric method is better
for testing and detecting change points for the TAR model when the model is well-specified. This result is not surprising
since testing sensitivity and estimation accuracy tend to be higher when the model is correctly restricted to a (smaller)
parametric class.

6. Illustrative example

In this section, we consider the daily new confirmed cases of Coronavirus disease of 2019 (COVID-19) in Germany.
The dataset contains 156 observations from April 28th to September 30th of 2020 which can be downloaded from
https://ourworldindata.org/coronavirus-source-data. From the COVID-19 timeline, Germany registered the first case on
January 28th and later suffered an outbreak of this pandemic from mid March to late April. In the data analysis, we select
the aforementioned time span between the first and second waves of COVID-19 so that the time series is approximately
stationary. Let Xi be the logarithm of confirmed cases at day i = 1, . . . , 156 and Yi = Xi+1 − Xi. The sample path of {Xi}

and the ADCF plot of {Xi} are shown in Fig. 3. Both plots in Fig. 3 suggest that the time series is approximately stationary
and has a moderate seasonal dependence with period S = 7. The seasonal behavior probably comes from the reporting
lag behind during weekends, which happens in almost every country. We consider the state-domain nonlinear regression
model (which is equivalent to Eq. (1)):

Yi = µ(Xi) + ϵi,

where {ϵi} is a martingale difference sequence. In this application, µ(x) represents the expected increase or decrease in
percentage of COVID-19 cases in day i when Xi−1 = x.

We apply the proposed method to testing whether µ(·) contains any change points. We choose T = [l, u] = [5.7, 7.5]
which includes 82.69% of Xi so that data are relatively abundant in this region and the test is expected to be accurate.
According to the leave-one-out cross-validation criterion, the selected bandwidths b and h are 0.446 and 0.40, respectively.
Through the practical implementation in Section 4.1, we calculate the empirical 99% quantile of Π∗

n with 10000 bootstrap
samples, which gives Cn,α = 1.596. Next, we investigate the behavior of the test statistics, which is shown in Fig. 4.
Our test rejects the null hypothesis of continuity of µ(·) at 1% level and flags two change points at x̂1 = 6.83 and
x̂2 = 7.40.

Note that Yi can be viewed as the conditional daily growth rate for COVID-19. For comparison, we also use the
nonparametric local polynomial method to fit µ(x) assuming that there is no change point. The corresponding estimated
regression function µ (x) over [5.7, 7.5] is plotted on the left hand side of Fig. 5. On the right hand side of Fig. 5 we plot
n

13
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S

Fig. 3. Top: Logarithm of daily confirmed cases of COVID-19 in Germany from April 28th to September 30th, 2020 (which is denoted as {Xi}

156
i=1 in

ection 6). Bottom: ADCF plot of {Xi}.

the fitted drift function µn(x) with the knowledge of the change points. The difference between the two plots in Fig. 5
suggest that, with or without the knowledge of change points, our understanding of the relationship between Yi and Xi
can be quite different. With the knowledge of the change points, we can see that two large jumps exist at x1 = 6.83 and
x2 = 7.40, which shows that the growth rate changes abruptly at these two points.

It is obvious to see from the right plot of Fig. 5 that those two change points divide the state domain into three
regimes/phases. Furthermore, the latter plot indicates that the nonlinear dynamics can be approximated by a three-regime
threshold model with the data generating mechanism switching at the detected change points. Additionally, according to
the timeline, we can find out the periods corresponding to each phase. The first phase x ∈ [5.7, 6.83) contains May 3–5,
10–11, 13, May 15–July 31, August 2–5, 9–10, 16–17, 19, 23–24, 30–31 and September 7 where the trajectory depicts
a relatively inactive period of the virus transmission and the conditional infection rate µ(x) decreases from positive to
negative as x increases. The second phase x ∈ [6.83, 7.4) includes April 28–30, May 2, 6–9, 12, 14, August 1, 7–8, 11–15,
18, 22, 25–29, September 1–6, 8–9, 11, 13–15, 20–21 and 27–28 where the conditional infection rate jumps up when x
surpasses 6.83 and then it decreases gradually again. The third phase x ∈ [7.4, 7.83] corresponds to May 1, August 6,
20–21, September 10, 12, 16–19, 22–26 and 29–30 where a sudden large increase in the conditional infection rate can be
found at the left boundary and then it decreases sharply, possibly due to strong governmental interventions.

In summary, the analyzed period from April 28th to September 30th of 2020 of German COVID-19 data shows
a complicated nonlinear dynamic balance between disease transmission and government intervention. The proposed
method of the paper could help understand this complex nonlinear dynamics by determining the boundaries of phases
where the state-domain relationship changes abruptly and subsequently segment the time series into multiple regimes.
14
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t

7

7

Fig. 4. The absolute value of test statistics |t∗n (x)| over [5.7, 7.5], red line denotes the 99% sample quantile (=1.596) of Π∗
n . (For interpretation of

he references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Left: Smooth fit with no change points; Right: Piece-wise smooth fit with the knowledge of two change points.

. Proofs of main results

.1. Proof of Theorem 3.2

The outline of the proof is as follows. Firstly, we use the following decomposition of Xi

Xi = µ(Xi−1) + ϵi = [µ(Xi−1) − µ(x)] + µ(x) + ϵi,

and prove the results involving the first two terms. This is given in Section 7.1.1.
Secondly, we use a technique called m-dependent approximation to approximate the martingale {ϵi} using {E[ϵk |

ξi,i−m] − E[ϵk | ξi−1,i−m]}, where ξk1,k2 := (ηk1 , . . . , ηk2 ), for a properly chosen order m → ∞, which simplifies the sum
of a sequence of dependent random variables to a corresponding sum of m-dependent random variables. This is done in
Section 7.1.2.

Thirdly, we divide the sequence of n (m-dependent) random variables into alternating big and small blocks, where the
length of big blocks has a slightly higher order than that of the small blocks. Furthermore, the length of the small blocks
is larger than m. Using this proof technique, we can approximate the sum of n (m-dependent) random variables using the
sum of the subsequence which includes the random variables residing in the big blocks. Since the length of small blocks
is larger than m, the m-dependent random variables in different big blocks are independent. This part of the proof is given
in Section 7.1.3.

Fourthly, we only need to deal with a sequence of independent sums of random variables within each big block. In
order to get prepared for using the multivariate Gaussian approximation result by Zaitsev (1987), we first compute the
asymptotic covariance structure of the sequence of independent sums. This is given in Section 7.1.4.

In the final two steps, we first apply the multivariate Gaussian approximation by Zaitsev (1987), which is given in
Section 7.1.5 and then prove the convergence to Gumbel distribution, which is given in Section 7.1.6. The techniques
used in these two steps heavily depend on some existing work, particularly, the work by Zhao and Wu (2008) and Liu
and Wu (2010), which eventually applied the work by Bickel and Rosenblatt (1973) and Rosenblatt (1976).
15
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.1.1. Decomposition
First, we substitute Xi = µ(Xi−1) + ϵi into tn(x) and separate the terms involving K and K ∗. We first focus on the term

involving K only. That is,

1
nbw(x, b)

n∑
k=1

K
(
Xk−1 − x

b

)
[µ(Xk−1) + ϵk] ,

=
1

nbw(x, b)

n∑
k=1

K
(
Xk−1 − x

b

)
[µ(Xk−1) − µ(x)]

+
1

nbw(x, b)

n∑
k=1

K
(
Xk−1 − x

b

)
µ(x)

+
1

nbw(x, b)

n∑
k=1

K
(
Xk−1 − x

b

)
ϵk.

(7)

Next it is easy to see that by the definition of w(x, b), the second term of the decomposition on the right hand side of
Eq. (7) equals µ(x). For the first term of the decomposition in Eq. (7), following exactly the proof of Liu and Wu (2010,
Lemma 5.2), uniformly over x, we have that

1
nbw(x, b)

n∑
k=1

K
(
Xk−1 − x

b

)
[µ(Xk−1) − µ(x)]

=
b2ψK

[
µ′′(x)f (x) + 2µ′(x)f ′(x)

]
E[w(x, b)] + OP(

√
log n/nb)

+ OP(b3) + OP(τn)

=
b2ψK

[
µ′′(x)f (x) + 2µ′(x)f ′(x)

]
E[w(x, b)]

+ b2OP(
√
log n/nb)

+ OP

⎛⎝√b log n
n

+ b3 +
b
n

√ ∞∑
k=−n

(Θn+k −Θk)2

⎞⎠
=

b2ψK
[
µ′′(x)f (x) + 2µ′(x)f ′(x)

]
E[w(x, b)]

+ OP

(√
b log n

n
+ b3

)
,

where τn :=

√
b log n

n +b4 +
b
n

√∑
∞

k=−n(Θn+k −Θk)2 comes from Zhao and Wu (2008, Lemma 2(ii)), and in the last equality

we have applied the assumptions on b and
∑

∞

k=−n(Θn+k −Θk)2 to get b
n

√∑
∞

k=−n(Θn+k −Θk)2 = O(
√
b log n/n).

.1.2. m-dependent approximation
For the third term of the decomposition in Eq. (7), recalling that we have defined the notation ξk1,k2 := (ηk1 , . . . , ηk2 ),

e consider the decomposition of ϵk,

ϵk =
(
ϵk − E[ϵk | ξk,k−m]

)
+
(
E[ϵk | ξk,k−m] − E[ϵk | ξk−1,k−m]

)
+ E[ϵk | ξk−1,k−m],

here m = ⌊nτ ⌋ where τ < 1− δ1. The first and last terms in the decomposition can be ignored comparing to the second
erm. To see this, consider

E[ϵk | ξk−1,k−m] = E[ϵk | ξk−1,k−m] − E[ϵk | Fk−1]

=

∞∑
i=1

E[ϵk | ξk−1,k−i] − E[ϵk | ξk−1,k−i−1],

which implies ∥E[ϵk | ξk−1,k−m]∥p = O
(∑

∞

i=m ρ
i
)

= O(ρm). Since m > (log n)2, we have

√
nb sup

x∈T

⏐⏐⏐⏐⏐ 1nb
n∑

k=1

K
(
Xk−1 − x

b

)
E[ϵk | ξk−1,k−m]

⏐⏐⏐⏐⏐ =

√
n
b
OP(ρm) = oP

(
(log n)−2) .

Similarly, one can verify in the same way that

√
nb sup

⏐⏐⏐⏐⏐ 1nb
n∑

K
(
Xk−1 − x

b

) (
ϵk − E[ϵk | ξk,k−m]

)⏐⏐⏐⏐⏐ = oP
(
(log n)−2) .
x∈T k=1
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urthermore, since the martingale differences are uncorrelated, we have

E[ϵ2k ] − E
[(
E[ϵk | ξk,k−m] − E[ϵk | ξk−1,k−m]

)2]
= O(ρm).

herefore, defining

ζk :=
E[ϵk | ξk,k−m] − E[ϵk | ξk−1,k−m]√

E
[(
E[ϵk | ξk,k−m] − E[ϵk | ξk−1,k−m]

)2] ,
we have

√
nb sup

x∈T

⏐⏐⏐⏐⏐⏐ 1nb
n∑

k=1

K
(
Xk−1 − x

b

)⎛⎝ζk −
ϵk√
E[ϵ2k ]

⎞⎠⏐⏐⏐⏐⏐⏐ = oP
(
(log n)−2) .

ext, following exactly the proof of Liu and Wu (2010, Lemma 5.3), we get that uniformly over x,

1
nbw(x, b)

n∑
k=1

K
(
Xk−1 − x

b

)
ϵk

=
1

nbw(x, b)

n∑
k=1

K
(
Xk−1 − x

b

)
σ (Xk)ζk + OP

(√
b log n

n

)

=
1
nb

1
E[w(x, b)] + OP(

√
log n/nb)

n∑
k=1

K
(
Xk−1 − x

b

)
σ (x)ζk + OP

(√
b log n

n

)

=
1
nb

1
f (x) + OP(b2 +

√
log n/nb)

n∑
k=1

K
(
Xk−1 − x

b

)
σ (x)ζk + OP

(√
b log n

n

)
.

ollowing the above arguments again we can compute the orders for the decomposition of the term involving K ∗ and get
n(x) by the differences. Note that many terms such as µ(x) in the second term and O(b2) term in the first term cancel
ut. Therefore, overall it can be easily verified that

tn(x) =

√
f (x)
σ (x)

1
nbf (x)

n∑
k=1

K̃
(
Xk−1 − x

b

)
σ (x)ζk + OP

(√
b log n

n
+ b3

)
+ OP(b2 +

√
log n/nb)OP(

√
log n),

where K̃ (·) is an anti-symmetric kernel defined by

K̃ (u) := K (u) − K ∗(u).

Now to prove Theorem 3.2, it suffices to show

P

(√
nb
2λK

sup
x∈T

1
√
f (x)

⏐⏐Mn(x) − M∗

n (x)
⏐⏐− dn ≤

z
(2 log b̄−1)1/2

)
→ e−2e−z

,

where

Mn(x) :=
1
nb

n∑
k=1

K
(
Xk−1 − x

b

)
ζk, M∗

n (x) :=
1
nb

n∑
k=1

K ∗

(
Xk−1 − x

b

)
ζk.

Note that we have E[ζi] = 0 and E[ζ 2i ] = 1. Next, we define a truncated version of ζi by

ζ̆i := ζi1{|ζi| ≤ (log n)12/(p−2)
} − E

[
ζi1{|ζi| ≤ (log n)12/(p−2)

}
]
.

We next define M̃n(x) using m-dependent conditional expectations

M̃n(x) :=
1
nb

n∑
k=1

ζ̆k

σ̆ 2

{
E
[
K
(
Xk−1 − x

b

)
| ξk−1,k−m

]
− E

[
K
(
Xk−1 − x

b

)
| ξk−2,k−m

]}
,

where σ̆ 2
:= Eζ̆ 2.
1

17
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.1.3. Alternating big and small blocks
Recall that m = ⌊nτ ⌋. We choose τ1 such that τ < τ1 < 1 − δ1 and split [1, n] into alternating big and small blocks

1, I1, . . . ,Hιn , Iιn , Iιn+1 with length |Hi| = ⌊nτ1⌋, |Ii| = ⌊nτ ⌋, ∀1 ≤ i ≤ ιn, and |Iιn+1| = n − ιn(⌊nτ1⌋ + ⌊nτ ⌋). Note that
n = ⌊n/(⌊nτ1⌋ + ⌊nτ ⌋)⌋. Then we define

uj(x) : =

∑
k∈Hj

ζ̆k

σ̆ 2

{
E
[
K
(
Xk−1 − x

b

)
| ξk−1,k−m

]

− E
[
K
(
Xk−1 − x

b

)
| ξk−2,k−m

]}
.

Then we define

M̃n(x) :=
1
nb

∑
j∈∪

ιn
i=1Hi

uj(x).

Next we show in the following that we can approximate Mn(x) by M̃n(x) and then approximate M̃n(x) by M̃n(x). That
is, we show

P
(

√
nb sup

x∈T

⏐⏐Mn(x) − M̃n(x)
⏐⏐ ≥ (log n)−2

)
= o(1). (8)

To show Eq. (8), we first follow the proof of Liu and Wu (2010, Lemma 5.1) using Freedman’s inequality for martingale
differences (Freedman, 1975) to get

P

(
√
nb sup

x∈T

⏐⏐⏐⏐⏐ 1nb
n∑

k=1

K
(
Xk−1 − x

b

)
(ζk − ζ̆k)

⏐⏐⏐⏐⏐ ≥ 3(log n)−2

)
= o(1),

hich implies we can approximate Mn(x) by replacing ζk with ζ̆k in the definition of Mn(x).
Next, we write K

(
Xk−1−x

b

)
as a sum of three terms

K
(
Xk−1 − x

b

)
=

{
K
(
Xk−1 − x

b

)
− E

[
K
(
Xk−1 − x

b

)
| ξk−1,k−m

]}
+

{
E
[
K
(
Xk−1 − x

b

)
| ξk−1,k−m

]
− E

[
K
(
Xk−1 − x

b

)
| ξk−2,k−m

]}
+ E

[
K
(
Xk−1 − x

b

)
| ξk−2,k−m

]
.

(9)

Note that ζ̆k is uncorrelated with the second term of the right hand side of Eq. (9). Next, we show that under our
assumptions on physical dependence measure, the first term of the right hand side of Eq. (9) becomes very small for
large m. In order to rigorously prove this fact, defining

Zk(x) = ζ̆k

{
K
(
Xk−1 − x

b

)
− E

[
K
(
Xk−1 − x

b

)
| ξk−1,k−m

]}
,

we first approximate
∑n

k=1 Zk(x) by the skeleton process
∑n

k=1 Zk(xj), 1 ≤ j ≤ qn, where qn = ⌊n2/b⌋ and xj = j/(bqn).
ollowing the same arguments as in Liu and Wu (2010, Proof of Lemma 4.2) using Freedman’s inequality for martingale
ifferences (Freedman, 1975), we have

sup
xj−1≤x≤xj

⏐⏐⏐⏐⏐
n∑

k=1

(Zk(x) − Zk(xj))

⏐⏐⏐⏐⏐ = oP
(√

nb/(log b−1)2
)
.

Next, we show supx∈TE|Zk(x)| exponentially decays with m. We consider two cases |Xk−1 − E(Xk−1 | ξk−1,k−m)| ≥ ρm
1 and

|Xk−1 − E(Xk−1 | ξk−1,k−m)| < ρm
1 , where ρ1 =

1+ρ
2 . Using the assumption θn,p = O(ρn), we have

sup
x∈R

E|Zk(x)| ≤ CP(|Xk−1 − E(Xk−1 | ξk−1,k−m)| ≥ ρm
1 )

+ C sup
x∈R

P
({

Xk−1 − x
b

∈ [−1, 1]
})

= O(ρ/ρ )m + O(ρm/b).
1 1
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ow, we can show the maximum of the skeleton process over {xj}, j = 1, . . . , qn is small. Recall that m is a polynomial
f n, then we have

P

(
max
1≤j≤qn

⏐⏐⏐⏐⏐
n∑

k=1

Zk(xj)

⏐⏐⏐⏐⏐ ≥
√
nb(log b−1)−2

)

≤qn
max1≤j≤qn E

⏐⏐∑n
k=1 Zk(xj)

⏐⏐
√
nb(log b−1)2

≤
nqn

√
nb(log b−1)2

sup
x∈T

E|Zk(x)| = o(1).

Next, we show the third term of the decomposition of K
(

Xk−1−x
b

)
in Eq. (9) can also be ignored. In order to show this,

e define

Nn(x) =
1

√
nb

n∑
k=1

ζ̆kE
[
K
(
Xk−1 − x

b

)
| ξk−1,k−m

]
.

Using the same argument as in Liu and Wu (2010, Proof of Lemma 4.2), we can approximate Nn(x) by its skeleton
rocess, since supxj−1≤x≤xj

⏐⏐Nn(x) − Nn(xj)
⏐⏐ = oP(log n)−2. We first approximate supx|Nn(x)| by the maximum over the

keleton process. Then we have P
(
max1≤j≤qn |Nn(xj)| ≥ (log n)−2

)
= o(1) using Freedman’s inequality for martingale

ifferences (Freedman, 1975). Therefore, we can approximate Mn(x) by

1
nb

n∑
k=1

ζ̆k

E[ζ 2k ]

{
E
[
K
(
Xk−1 − x

b

)
| ξk−1,k−m

]
− E

[
K
(
Xk−1 − x

b

)
| ξk−2,k−m

]}
.

urthermore, since |1 − E[ζ̆ 2k ]/E[ζ 2k ]| = O((log n)−12/(p−2)), we can replace ζ̆k/E[ζ 2k ] by ζ̆k/σ̆ 2, which leads to the definition
of M̃n(x). Therefore, we have proved

P
(

√
nb sup

x∈T

⏐⏐⏐Mn(x) − M̃n(x)
⏐⏐⏐ ≥ (log n)−2

)
= o(1).

Therefore, in order to finish the proof of Eq. (8), it suffices to show

P
(

√
nb sup

x∈T
|Rn(x)| ≥ (log n)−2

)
= o(1),

where Rn(x) :=
1
nb

∑
j∈∪

ιn+1
i=1 Ii

uj(x). Following the same argument as above using skeleton process, we only need to consider
the grids {xj, j = 0, . . . , qn}. Using the fact that τ < τ1 and n−δ1 = O(b), again by Freedman’s inequality for martingale
ifferences, for some constant C that

P
(

√
nb sup

0≤j≤qn

⏐⏐Rn(xj)
⏐⏐ ≥ (log n)−3

)
≤ 4qn exp

[
(log n)−6nb

−2C(log n)−3
√
nb − 2C(n1−τ1+τ + nτ1 )b

]
= o(1),

which finishes the proof of Eq. (8).
Observing that, since K (·) is supported on [0, 1], one of the following two terms must be zero:

E
[
K
(
Xk−1 − x

b

)
| ξk−1,k−m

]
− E

[
K
(
Xk−1 − x

b

)
| ξk−2,k−m

]
,

E
[
K ∗

(
Xk−1 − x

b

)
| ξk−1,k−m

]
− E

[
K ∗

(
Xk−1 − x

b

)
| ξk−2,k−m

]
.

Hence, defining M̃∗
n (x) similarly as M̃n(x) using K ∗(·) instead of K (·), by Eq. (8), we only need to focus on the following

term

M̂n(x) : =

√
nb

2λK f (x)

[
M̃n(x) − M̃∗

n (x)
]

=
1√

nbλK̃ f (x)

∑
k∈∪

ιn
i=1Hi

ζ̆k

σ̆ 2

{
E
[
K̃
(
Xk−1 − x

b

)
| ξk−1,k−m

]

− E
[
K̃
(
Xk−1 − x

)
| ξk−2,k−m

]}
.

b
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learly, in order to complete the proof of Theorem 3.2, it suffices to show

P
(
sup
x∈T

⏐⏐⏐M̂n(x)
⏐⏐⏐− dn ≤

z
(2 log b̄−1)1/2

)
→ e−2e−z

. (10)

.1.4. Asymptomatic covariance structure
Next, we prove some results on the asymptomatic covariance structure of {M̂n(x)} which will be needed later for

aussian approximation using the results in Bickel and Rosenblatt (1973). Define the following quantities: r(s) :=

K (x)K (x + s)dx/λK , r̂(s) := EM̂n(x)M̂n(x + s), r̃(s) :=
∫
K̃ (x)K̃ (x + s)dx/λK̃ , and K̃2 :=

∫ 1
−1(K̃

′(x))2dx/(2λK̃ ). Note that
ince K̃ ′(0) > 0, we have

∫
K (u)K ∗(u ± s)du = O(

∫
|s|
0 x(|s| − x)dx) = O(|s|3) = o(|s|2). Then by the definition of r̃(s), using

K̃ = 2λK , we have

r̃(s) =

∫
K̃ (v)K̃ (v + s)dv/λK̃

=
1
λK̃

∫ [
K (v) − K ∗(v)

] [
K (v + s) − K ∗(v + s)

]
dx

=
1

2λK

[∫
K (v + s)K (v)dv +

∫
K ∗(v + s)K ∗(v)dv

−

∫
K ∗(v + s)K (v)dv −

∫
K (v + s)K ∗(v)dv

]
= r(s) + o(|s|2).

Next, according to Bickel and Rosenblatt (1973, Theorems B1 and B2), we have r(s) = 1 − K2|s|2 + o(|s|2). Note that

K̃2 =

∫ 1

−1
(K̃ ′(x))2dx/(2λK̃ ) =

1
2

∫ 1

−1
(K̃ ′(x))2dx/(2λK ) =

1
2
(2K2) = K2.

his implies r̃(s) = 1 − K̃2|s|2 + o(|s|2), which can also be obtained directly from Bickel and Rosenblatt (1973, Theorems
1 and B2).
Next, we show r̂(s) = r̃(s)+O(b). Note that {ζ̆k} are uncorrelated and Eζ̆k = 0. Then, using |f (v + s) −

√
f (t)f (s)| = O(b)

uniformly over |s − t| ≤ 2b and |v| ≤ 2b, we have

EM̂n(t)M̂n(s)

=
1

nbλK̃

∫
1

√
f (t)f (s)

∑
k∈∪

ιn
i=1Hi

{
E
[
K̃
(
Xk−1 − t

b

)
K̃
(
Xk−1 − s

b

)]
+ O(b2)

}

=
1

bλK̃

∫
1

f (v + s) + O(b)
K̃
(
v − t + s

b

)
K̃
(v
b

)
f (v + s)dv + O(b)

=
1
λK̃

∫
K̃ (v − t + s) K̃ (v) dv + O(b) = r̃(t − s) + O(b).

herefore, we have proved that, as s → 0,

r̃(s) = 1 − K̃2|s|2 + o(|s|2), r̃(s) = r(s) + o(|s|2), r̂(s) = r̃(s) + O(b). (11)

.1.5. Gaussian approximation
Now, we go back to prove Eq. (10). We use similar techniques as in Liu and Wu (2010, Proof of Lemma 4.5). First, as

n Bickel and Rosenblatt (1973), we split the interval T into alternating big and small intervals W1, V1, . . . ,WN , VN , where
i = [ai, ai + w], Vi = [ai + w, ai+1], ai = (i − 1)(w + v), and N = ⌊(u − l)/(w + v)⌋. We let w be fixed, and v be small
hich goes to 0. Since u and l are fixed numbers, without loss of generality, we assume l = 0 and u = 1 in this proof.
Next, we approximate Ω+

:= sup0≤t≤1M̂n(t) by big blocks {Wk}. That is, by Ψ +
:= max1≤k≤NΥ

+

k , where Υ +
:=

upt∈WkM̂n(t). Then we further approximate Υ +

k via discretization by Ξ+

k := max1≤j≤χ M̂n(ak + jax−1), where χ = ⌊wx/a⌋
ith a > 0. We define Ω−, Ψ −, Υ −

k , and Ξ−

k similarly by replacing sup or max by inf or min, respectively. Letting
= max(Ω+,−Ω−) = sup0≤t≤1|M̂n(t)| and xz = dn + z/(2 log b−1)1/2, we have⏐⏐P(Ω ≥ xz) − P({Ψ +

≥ xz} ∪ {Ψ −
≤ −xz})

⏐⏐ ≤ R1 + R2,⏐⏐⏐⏐⏐P({Ψ +
≥ xz} ∪ {Ψ −

≤ −xz}) − P

(
N⋃

k=1

{
Ξ+

k ≥ xz
}

∪

N⋃
k=1

{
Ξ−

k ≤ −xz
})⏐⏐⏐⏐⏐

≤ R3 + R4.
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here

R1 : = P

(
max
1≤k≤N

sup
t∈Vk

M̂n(t) ≥ xz

)
,

R2 : = P

(
min
1≤k≤N

inf
t∈Vk

M̂n(t) ≤ −xz

)
,

R3 : =

N∑
k=1

⏐⏐P(Υ +

k ≥ xz) − P(Ξ+

k ≥ xz)
⏐⏐ ,

R4 : =

N∑
k=1

⏐⏐P(Υ −

k ≤ −xz) − P(Ξ−

k ≤ −xz)
⏐⏐ .

Next, we are ready to apply Gaussian approximation. We first use discretization for approximating M̂n(x). Let sj =

j/(log n)6, 1 ≤ j < tn, where tn = 1 + ⌊(log n)6t⌋, stn = t . Write [sj−1, sj] =
⋃qn

k=1[sj,k−1, sj,k], where qn = ⌊(sj − sj−1)n2
⌋ =

⌊n2/(log n)6⌋ and sj,k − sj,k−1 = (sj − sj−1)/qn. Following the same arguments as in Liu and Wu (2010, Proof of Lemma 4.6),
we have the following discretization approximation holds for all large enough Q ,

P
(

sup
0≤s≤t

M̂n(v + s) ≥ x
)

≤P
(

max
1≤j≤tn

M̂n(v + sj) ≥ x − (log n)−2
)

+ Cn−Q .

Next, we apply the multivariate Gaussian approximation from Zaitsev (1987). To this end, similar to the definition of uj(t),
we first define

ũj(t) : =

∑
k∈Hj

ζ̆k

σ̆ 2

{
E
[
K̃
(
Xk−1 − t

b

)
| ξk−1,k−m

]

− E
[
K̃
(
Xk−1 − t

b

)
| ξk−2,k−m

]}
, j = 1, . . . , ιn

Note that the sequence of random variables {ũj(t), j = 1, . . . , ιn} are independent. Then we define

ûj(t) := ũj(t)1{|ũj(t)| ≤
√
nb(log n)−20p/(p−2)

}

− E
[
ũj(t)1{|ũj(t)| ≤

√
nb(log n)−20p/(p−2)

}

]
.

ow we introduce M̂n(t) :=
1√

nbλK̃ f (t)

∑ιn
j=1 ûj(t). Then using (Zaitsev, 1987, Theorem 1.1) as well as suptmax1≤j≤ιn ∥̂uj(t)−

ũj(t)∥ ≤ Cn−Q for large enough Q , we have

P
(

max
1≤j≤tn

M̂n(v + sj) ≥ x − (log n)−2
)

≤P
(

max
1≤j≤tn

M̂n(v + sj) ≥ x − (log n)−2
)

+ Cn−Q

≤P
(

max
1≤j≤tn

Yn(j) ≥ x − 2(log n)−2
)

+ Ct5/2n exp
(

−
C(log n)18p/(p−1)

t5/2n

)
+ Cn−Q ,

here (Yn(1), . . . , Yn(tn)) is a centered Gaussian random vector with covariance matrix Σ̂n = Cov(M̂n(v+ s1), . . . , M̂n(v+

stn )).
Let ψ be the density function of standard Gaussian, and H2(a) be the Pickands constants (Bickel and Rosenblatt, 1973,

Theorem A1, Lemma A1, and Lemma A3). Using Eq. (11), let t > 0 be such that inf{s−2(1− r̃(s)) : 0 ≤ s ≤ t} > 0. Following
xactly the arguments in Liu and Wu (2010, Proof of Lemma 4.6) to apply (Bickel and Rosenblatt, 1973, Lemma A3 and
emma A4), we can obtain that for a > 0,

P

⎛⎝⌊tx/a⌋⋃ {
M̂n(v + jax−1) ≥ x

}⎞⎠ = xψ(x)
H2(a)
a

K̃ 1/2
2 t + o(xψ(x)),
j=1
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niformly over 0 ≤ v ≤ 1. The limit when a → 0 also holds, that is

P

( ⋃
0≤s≤t

{
M̂n(v + s) ≥ x

})
= xψ(x)K̃ 1/2

2 t/
√
π + o(xψ(x)), (12)

here we have used the Pickands constants H2 = lima→0H2(a)/a = 1/
√
π . The left tail version of the tail bounds also

olds with ≥ x replaced by ≤ x. Furthermore, we can show through elementary calculations that

lim
a→0

lim sup
v→0

lim sup
n→∞

Rj = 0, j = 1, . . . , 4.

herefore, it suffices to show the following convergence to Gumbel law

lim
a→0

lim sup
v→0

lim sup
n→∞

⏐⏐⏐⏐⏐P
(

N⋃
k=1

{
Ξ+

k ≥ xz
}

∪

N⋃
k=1

{
Ξ−

k ≤ −xz
})

− (1 − e−2e−z
)

⏐⏐⏐⏐⏐ = 0. (13)

7.1.6. Convergence to Gumbel distribution
The main steps of the proof of Eq. (13) are as follows. First, we approximate M̂n(t) by Yn(t). Then, we approximate Yn(t)

y another quantity M̂ ′
n(t) which is defined similarly to M̂n(x) but using a sequence of i.i.d. random variables instead of the

ependent time series {Xk}. Finally, we apply (Rosenblatt, 1976, Theorem) to show convergence to Gumbel distribution.
We define

Bk,j : = {M̂n(ak + jax−1) ≥ x} ∪ {M̂n(ak + jax−1) ≤ −x},

Dk,j : = {Yn(ak + jax−1) ≥ x} ∪ {Yn(ak + jax−1) ≤ −x},

where Yn(·) is a centered Gaussian process with covariance function

Cov(Yn(s1), Yn(s2)) = Cov(M̂n(s1), M̂n(s2)).

First we approximate M̂n(t) using Yn(t). Recall that w and v are the lengths of big and small blocks Wi and Vi. Let
N = ⌊1/(w + v)⌋. Define a different truncation order for Mn(t) by M̂ ′

n(t) :=
1√

nbλK̃ f (t)

∑ιn
j=1 û

′

j(t) for given d, where

û′

j(t) := ũj(t)1{|ũj(t)| ≤
√
nb(log n)−20dp/(p−2)

}

− E
[
ũj(t)1{|ũj(t)| ≤

√
nb(log n)−20dp/(p−2)

}

]
.

Then using M̂ ′
n(t) and following exactly the same proof from Liu and Wu (2010, Proof of Lemma 4.10) to get that, for any

fixed integer l that 1 ≤ l ≤ N/2,⏐⏐⏐⏐⏐⏐P
(

N⋃
k=1

Ak

)
−

2l−1∑
d=1

(−1)d−1

⎛⎝ ∑
1≤i1<···<id≤N

−

∑
I

⎞⎠P

⎛⎝ d⋂
j=1

Cij

⎞⎠⏐⏐⏐⏐⏐⏐
≤

C2l

(2l)!
+ O

(
1

log n

)
,

(14)

here Ak :=
⋃⌊wx/a⌋

j=1 Bk,j, Ck :=
⋃⌊wx/a⌋

j=1 Dk,j, C does not depend on l, and

I :=

{
1 ≤ i1 < · · · < id ≤ N : min

1≤j≤d−1
qj ≤ ⌊2w−1

+ 2⌋
}
.

Next, we construct M̂ ′
n(t) in the following way. Let {η

(k)
i }, i ≤ k ≤ n, be i.i.d. copies of {ηi}, and ξ

(k)
j = (. . . , η(k)j−1, η

(k)
j ).

et X (k)
i = G(ξ (k)j ). Note that X (k)

k , 1 ≤ k ≤ n, are i.i.d. Now define A′

k the same as Ak except by replacing Yj and {ηi} with
X (k)
k and {η

(k)
i }, respectively. Repeat the previous arguments for getting Eq. (14), we have⏐⏐⏐⏐⏐⏐P
(

N⋃
k=1

A′

k

)
−

2l−1∑
d=1

(−1)d−1

⎛⎝ ∑
1≤i1<···<id≤N

−

∑
I

⎞⎠P

⎛⎝ d⋂
j=1

Cij

⎞⎠⏐⏐⏐⏐⏐⏐
≤

C2l

(2l)!
+ O

(
1

log n

)
.
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etting n → ∞ then l → ∞, by triangle inequality, we have

lim sup
n→∞

⏐⏐⏐⏐⏐P
(

N⋃
k=1

Ak

)
− P

(
N⋃

k=1

A′

k

)⏐⏐⏐⏐⏐ = 0.

Now the key observation is that we can deal with {A′

k} now and A′

k are defined using {X (k)
k } which are i.i.d. Next, we

define R′

1 to R′

4 the same as R1 to R4 except using {X (k)
k } and {ηki } instead of {Xk} and {ηi}, then by Eq. (12) and elementary

calculations again we have lima→0 lim supv→0 lim supn→∞ R′

j = 0 for j = 1, . . . , 4. This implies

lim
a→0

lim sup
v→0

lim sup
n→∞

⏐⏐⏐⏐⏐P
(

N⋃
k=1

A′

k

)
− P

(
sup
0≤t≤1

⏐⏐⏐M̂ ′

n(t)
⏐⏐⏐ < x

)⏐⏐⏐⏐⏐ = 0,

where M̂ ′
n(t) is defined in the same way as M̂n(t) by replacing {Xk} with {X (k)

k }, and {ηi} with {η
(k)
i }. Finally, since {X (k)

k } are
i.i.d., we can apply (Rosenblatt, 1976, Theorem), which leads to the convergence of P

(
sup0≤t≤1

⏐⏐⏐M̂ ′
n(t)

⏐⏐⏐ < xz
)

to e−2e−z
.

This completes the proof of Theorem 3.2.

7.2. Proof of Theorem 3.5

First, let rn and sn be positive sequences, then rn = Ω(sn) if sn = o(rn). On the other hand, rn = Θ(sn) if both sn = O(rn)
and rn = O(sn) hold. Note that

P
({

M̂ = M
}

∩

{
max
1≤i≤M

|x̂i − xi| < cn

})
= P

(
max
1≤i≤M

|x̂i − xi| < cn | M̂ = M
)
P
(
M̂ = M

)
.

We first argue that P
(
M̂ < M

)
→ 0, which implies at least one change point has not been detected, then we can write

P
(
M̂ < M

)
≤

M∑
i=1

P (the change point ai is not detected) .

Then, by the validity of the bootstrap procedure, when
√

b log n
n = o(∆̃n), the power of the test goes to 1 as n → ∞ which

mplies that for any i,

P (the change point ai is not detected) → 0.

his conclude that P
(
M̂ < M

)
→ 0.

Next we argue that P
(
M̂ > M

)
→ α. Note that M̂ > M implies there is a set T̃ without any change point in it,

owever, supx∈T̃ |tn(x)| ≥ Cn,α . Note that by our algorithm, we can consider T̃ to be the largest set constructed by ruling
ut M intervals from [l, u] such that each interval has length 2b and contains one change point. Then since M is a fixed
onstant and b → 0, we have |T̃ | = (|u − l| − 2Mb)+ → |u − l|. Then we can apply our main result Theorem 3.2 again on
T̃ to get that P

(
supx∈T̃ |tn(x)| ≥ Cn,α

)
→ α, which implies P

(
M̂ > M

)
→ α.

Therefore, we have P
(
M̂ = M

)
→ 1 − α. Then it suffices to show

P
(

max
1≤i≤M

|x̂i − xi| < cn | M̂ = M
)

→ 1.

Since M is finite, we only need to focus on one change point. Let x0 be any of the true change point and x̂ be its estimate,
it suffices to show P

(
|x̂ − x0| ≥ cn | M̂ = M

)
→ 0. Without loss of generality, we assume x̂ − x0 = ĉn = oP(b) and

tn(x0) > 0. The case tn(x0) < 0 can be shown using similar arguments. Now we follow similar arguments as in Müller
(1992). Define ζ (c) := tn(x0 + c) − tn(x0), for c = o(b). Then we can write ĉn = argmaxζ (c). Therefore, it suffices to

show ĉn = OP

(
1
∆̃n

√
b log n

n

)
. Suppose b is small enough such that the b-neighborhood of x0 does not include any other

hange points, then we apply the previous decomposition in Eq. (7). Note that since x0 is a change point, without loss of
enerality, we assume µ(x) is left continuous at x = x0, then the following term has the order of Θ(∆̃n):

1
nb

⏐⏐⏐⏐⏐
n∑

K̃
(
Xk−1 − x0

b

)
µ(x0)
f (x )

−

n∑
K̃
(
Xk−1 − (x0 + c)

b

)
µ(x0 + c)
f (x + c)

⏐⏐⏐⏐⏐ .

k=1 0 k=1 0
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urthermore, using
∫ s
0 K (x)dx = Θ(s2) because of K̃ ′(0) > 0, considering cases |Xk−1 − x0| ∈ [0, c] and |Xk−1 − x0| ∈ (c, b]

separately, we have⏐⏐⏐⏐⏐ 1
nbf (x0 + c)

n∑
k=1

K̃
(
Xk−1 − (x0 + c)

b

)
[µ(Xk−1) − µ(x0 + c)]

−
1

nbf (x0)

n∑
k=1

K̃
(
Xk−1 − x0

b

)
[µ(Xk−1) − µ(x0)]

⏐⏐⏐⏐⏐
=

[
1
b

∫ c

0
K
( x
b

)
dx
]
ΘP(∆̃n)

+

[
1
b

∫ b

c
K
( x
b

)
dx
]
OP(b3 +

√
b log n/n)

=

[∫ c/b

0
K (x)dx

]
ΘP(∆̃n) + OP(b3 +

√
b log n/n)

=(c/b)2ΘP
(
∆̃n
)
+ OP(b3 +

√
b log n/n).

inally, by the assumptions on K ′ in Theorem 3.5, we can follow the same arguments in the proof of Theorem 3.2 as the
m-dependent approximation Section 7.1.2 and alternating big/small blocks Section 7.1.3 applying to K̃ ′ instead of K̃ to
et

1
nbf (x)

n∑
k=1

K̃ ′

(
Xk−1 − x

b

)
ϵk = OP

(√
log n
nb

)
.

Furthermore, using the fact that |K̃ ′′(u)| is uniformly bounded and mean value theorem, we have

E

[
1

f (x)

(
K̃
(
Xk−1 − x

b

)
− K̃

(
Xk−1 − x + c

b

)
+

( c
b

)
K̃ ′

(
Xk−1 − x

b

))2
]

=

∫
1

f (x)

[
K̃
(
y − x
b

)
− K̃

(
y − x + c

b

)
+

( c
b

)
K̃ ′

(
y − x
b

)]2
f (y)dy

=

∫
b
[
K̃ (t)− K̃

(
t +

c
b

)
+

( c
b

)
K̃ ′ (t)

]2 f (tb + x)
f (x)

dt

= b
( c
b

)2 ∫ [
K̃ (t) − K̃ (t + c/b)

c/b
+ K̃ ′(t)

]2

(1 + O(b))dt = O
(
b
( c
b

)4)
.

Next, we define a new kernel Ǩ such that

Ǩ
(
Xk−1 − x

b

)

:=

(
b
c

)2 [
K̃
(
Xk−1 − x

b

)
− K̃

(
Xk−1 − x + c

b

)
+

( c
b

)
K̃ ′

(
Xk−1 − x

b

)]

o we have E
[

1
f (x) Ǩ

(
Xk−1−x

b

)2]
= O(b). Then we can approximate the following term using the same arguments of

-dependent approximation and alternating big/small blocks as in Sections 7.1.2 and 7.1.3 in the proof of Theorem 3.2
pplying to this new kernel Ǩ to get

1
nbf (x)

n∑
k=1

[
K̃
(
Xk−1 − x

b

)
− K̃

(
Xk−1 − x + c

b

)
+

( c
b

)
K̃ ′

(
Xk−1 − x

b

)]
ϵk

=

( c
b

)2 [ 1
nbf (x)

n∑
k=1

Ǩ
(
Xk−1 − x

b

)
ϵk

]
= OP

(( c
b

)2√ log n
nb

)
.
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b

herefore, we have

1
nbf (x)

n∑
k=1

[
K̃
(
Xk−1 − x

b

)
− K̃

(
Xk−1 − x + c

b

)]
ϵk

=

( c
b

)[
−1

nbf (x)

n∑
k=1

K̃ ′

(
Xk−1 − x

b

)
ϵk

]
+ OP

(( c
b

)2√ log n
nb

)
=

( c
b

)
OP

(√
log n
nb

)
+

( c
b

)2
OP

(√
log n
nb

)
.

Then using
√

log n
nb = o(∆̃n) we can conclude that

ζ (c) = −

( c
b

)2
ΘP
(
∆̃n
)
+

( c
b

)
OP

(√
log n
nb

)
− OP(b3 +

√
b log n/n).

ecall that the estimated change point x̂ = x0 + ĉn, where ĉn = argmaxζ (c), then we have

ĉn = OP

(
b

∆̃n

√
log n
nb

)
= OP

(
1

∆̃n

√
b log n

n

)
,

whenever b4 = o((log n)/(n∆̃n)) and b3 = o((log n)/(n∆̃2
n)). This is always true since we have assumed δ2 ≤ 1/4 which

implies b = O(n−1/4) so b4 = O(1/n) = o((log n)/n). Therefore, if we choose cn > 0 such that ĉn = o(cn), then we have
P(|ĉn| < cn) → 0, which implies P

(
|x̂ − x0| ≥ cn | M̂ = M

)
→ 0.

8. Additional proofs

8.1. Proof of Remark 3.1

For σ 2
n (x), we first write it as the sum of three terms:

σ 2
n (x) =

1
nhfn(x)

n∑
k=1

W
(
Xk − x

h

)
ϵ2k

+
2

nhfn(x)

n∑
k=1

W
(
Xk − x

h

)
[µ(Xk) − µn(Xk)]ϵk

+
1

nhfn(x)

n∑
k=1

W
(
Xk − x

h

)
[µ(Xk) − µn(Xk)]2.

or the first term, we first approximate ϵ2k by {E[ϵ2k | ξk,k−m]} where m = ⌊nτ ⌋ with τ > 0 small enough. Using the same
rgument as in Section 7.1, we have

sup
x

⏐⏐⏐⏐⏐ 1nh
n∑

k=1

W
(
Xk − x

h

){
ϵ2k − E[ϵ2k | ξk,k−m]

}⏐⏐⏐⏐⏐ = OP
(
ρm)

= oP
(
n−1/2),

here we choose m = c log n with c > −
1

2 log(ρ) . We then divide 1, . . . ,m into ⌊n/m⌋ + 1 blocks indexed by

, . . . , ⌊n/m⌋ + 1. Then it is clear that the sum of blocks with odd indices is independent with the sum of blocks with
ven indices. Following the same argument as the proof of Liu and Wu (2010, Theorem 2.5) for each subsequence of the
locks, and use a union bound, we can get

sup
x

⏐⏐⏐⏐⏐ 1
nhfn(x)

n∑
k=1

W
(
Xk − x

h

)
E[ϵ2k | ξk,k−m]

⏐⏐⏐⏐⏐
= OP

(
2m

(
h2

+

√
log(n/m)
(n/m)h

))
= OP

(
log n

(
h2

+
log n
√
nh

))
= OP

(
h2 log n +

(log n)2
√
nh

)
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For the second term, we first approximate {ϵk} using {ϵ′

k}, where ϵ′

k := E[ϵk | ξk,k−m]−E[ϵk | ξk−1,k−m]. Then following
he same argument as in Section 7.1 we have

sup
x

⏐⏐⏐⏐⏐ 1nh
n∑

k=1

W
(
Xk − x

h

) (
ϵk − ϵ′

k

)⏐⏐⏐⏐⏐ = O
(
ρm) .

Then, again choosing m = c log n and divide 1, . . . , n into ⌊n/m⌋ + 1 blocks, by the same argument as in Zhao and Wu
2008, pp. 1875), we can get

sup
x

⏐⏐⏐⏐⏐ 2
nhfn(x)

n∑
k=1

W
(
Xk − x

h

)
[µ(Xk) − µn(Xk)]ϵk

⏐⏐⏐⏐⏐
= OP

(
(log n)2

(
log n
nh5/2 + ρm

))
= OP

(
(log n)3

nh5/2 +
(log n)2

√
n

)
inally, for the last term, we have

sup
x

⏐⏐⏐⏐⏐ 1
nhfn(x)

n∑
k=1

W
(
Xk − x

h

)
[µ(Xk) − µn(Xk)]2

⏐⏐⏐⏐⏐
=OP

(
h4

+
log n
nh

)
· sup

x

1
nh

n∑
k=1

⏐⏐⏐⏐W (
Xk − x

h

)⏐⏐⏐⏐ = OP

(
h4

+
log n
nh

)
.

hen, using 0 < δ1 < 1/4 we have that

sup
x

⏐⏐σ 2
n (x) − σ 2(x)

⏐⏐ = OP

(
h2 log n +

(log n)2
√
nh

+
(log n)3

nh5/2

)
= OP

(
h2 log n +

(log n)3
√
nh

)
For fn(x), similarly, by the same arguments as the proof for σ 2

n (x), following the proof of Liu and Wu (2010, Lemma 4.4),
we can obtain supx |fn(x) − f (x)| = OP

(
(log n)3
√
nh

+ h2 log n
)
.

8.2. Proof of Proposition 4.1

Since {Uk}
n
k=0 are i.i.d. standard Gaussian distributed random variables, the proof for this proposition is simpler than

heorem 3.2. We can immediately prove the convergence to Gumbel distribution by using (Rosenblatt, 1976, Theorem 1).
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