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High-dimensional distributions, especially those with heavy tails, are
notoriously difficult for off-the-shelf MCMC samplers: the combination of
unbounded state spaces, diminishing gradient information, and local moves
results in empirically observed “stickiness” and poor theoretical mixing
properties—lack of geometric ergodicity. In this paper, we introduce a new
class of MCMC samplers that map the original high-dimensional problem in
Euclidean space onto a sphere and remedy these notorious mixing problems.
In particular, we develop random-walk Metropolis type algorithms as well as
versions of the Bouncy Particle Sampler that are uniformly ergodic for a large
class of light and heavy-tailed distributions and also empirically exhibit rapid
convergence in high dimensions. In the best scenario, the proposed samplers
can enjoy the “blessings of dimensionality” that the convergence is faster in
higher dimensions.

1. Introduction. Bayesian analysis relies heavily on Markov chain Monte Carlo
(MCMC) methods to explore complex posterior distributions. In most typical settings, such
distributions have support contained within a subset S of Rd for some d > 0, and then it is
natural to construct appropriate MCMC algorithms directly on S. In practice, this is how the
vast majority of algorithms are constructed, although there are intrinsic problems with this
approach. For instance, it is now well established (Mengersen and Tweedie (1996)) that the
popular vanilla MCMC workhorse, the random-walk Metropolis (RWM) algorithm fails to
be uniformly ergodic for any target density π when S is unbounded. All existing generic
MCMC methods are built upon local proposal mechanisms and are similarly afflicted. Lack
of uniform ergodicity results in sensitivity of the algorithm’s convergence to its starting value,
and potentially long burn-in periods.

Moreover, these convergence problems are exacerbated for target distributions with heavy
(heavier than exponential) tails. For instance, in such cases RWM and the Metropolis-adjusted
Langevin algorithm (MALA) fail to be even geometrically ergodic (i.e., they converge at
a rate slower than any geometric rate) (Roberts and Tweedie (1996a), Jarner and Hansen
(2000), Roberts and Tweedie (1996b)). In practice, this manifests itself on the algorithm
trajectories by the presence of infrequent excursions of heavy-tailed duration into the target
distribution tails. This can lead to further theoretical and practical problems, for example, the
absence of a central limit theorem (CLT) for all L2 functions, for example, Jarner and Roberts
(2007), and instability of Monte Carlo estimators with large and difficult-to-quantify mean
square errors which are highly sensitive to initial values.

Important modern innovations in MCMC algorithms have come from Piecewise Deter-
ministic Markov Processes (PDMPs) (Bernard, Krauth and Wilson (2009), Bouchard-Côté,
Vollmer and Doucet (2018), Bierkens, Fearnhead and Roberts (2019)) which offer for the
first time generic recipes for the construction of nonreversible MCMC and often yield sub-
stantial gains in algorithm efficiency as a result. Although not completely necessary, it turns
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out to be convenient and natural to construct PDMPs as continuous time algorithms. While
the practical use of PDMPs for posterior exploration is still in its infancy, these methods
offer substantial promise. However, PDMPs are still localised algorithms and as such also
suffer from the lack of uniform and/or geometric ergodicity on unfounded state spaces and/or
heavy-tailed targets (Vasdekis and Roberts (2022, 2023), Andrieu, Dobson and Wang (2021),
Andrieu et al. (2021)).

In contrast, when the target density tails are exponential or lighter, RWM, MALA, and
related algorithms are generally geometrically ergodic under weak regularity conditions
(Roberts and Tweedie (1996a), Jarner and Hansen (2000)). Some transformation strategies
for achieving this are described in Sherlock, Fearnhead and Roberts (2010), Johnson and
Geyer (2012), with closely related strategies being proposed in Kamatani (2018), although
these approaches are unlikely to regain uniform ergodicity. When S is bounded, then MCMC
algorithms are generally easily shown to be uniformly ergodic (see, e.g., Mengersen and
Tweedie (1996) for RWM). This naturally suggests that transformations designed to com-
pactify S might facilitate the construction of more robust families of MCMC algorithms.
However, finding generic solutions to the construction of such transformations which lead to
well-behaved densities on the transformed space is challenging.

It is, however, far easier to construct general transformations to transform R
d to a

pre-compact space. The most celebrated of such transformations is stereographic projection
which was known to the ancient Egyptians; see Coxeter (1961) for a modern description. It
maps R

d → S
d \ N (where N denotes the North Pole), that is, the d-sphere excluding its

North Pole. This paper will explore the use of stereographically projected algorithms. One
iteration of such an algorithm takes the current state x ∈ R

d , transforms to S
d \ N through

inverse stereographic projection, carrying out an appropriately constructed MCMC step on
S

d \ N before returning to R
d by stereographic projection. The contributions of our work are

as follows.

1. We present the Stereographic Projection Sampler (SPS), an efficient and practical
implementation of the above programme for RWM. It employs a simple reprojection step to
ensure the Markov chain remains on S

d \ N . We provide a dimension and scale dependent
recipe for choosing the radius of S. See Section 2.1.

2. We prove that for continuous positive densities, π on R
d with tails no heavier than

those of a d-dimensional multivariate Student’s t distribution with d degrees of freedom, SPS
is uniformly ergodic. The tail conditions on π are in fact necessary for geometric ergodicity.
See Theorem 2.1 and Remark 2.1.

3. We give a high-dimensional analysis of SPS for the stylised family of product i.i.d.
form targets, by maximizing the expected squared jumping distance (ESJD) as well as by
showing for a variant of SPS that each component converges (as d → ∞) to a Langevin
diffusion. This affords a direct and uniformly favorable comparison with the Euclidean RWM
algorithm. See Section 5.

4. We also introduce the Stereographic Bouncy Particle Sampler (SBPS) which replaces
the random walk move in SPS with a PDMP algorithm that follows great circle trajectories
interspersed with abrupt direction changes. See Section 2.2.

5. We prove the uniform ergodicity of SBPS under weaker conditions than those for
SPS, specifically requiring tails to be lighter than those of a d-dimensional multivariate Stu-
dent’s t distribution with d − 1/2 degrees of freedom. See Theorem 2.2 and Corollary 2.1.

6. For isotropic targets (i.e., spherically symmetric targets), both light- and heavy-tailed,
we (informally) demonstrate that the proposed SPS and SBPS can enjoy a blessings of di-
mensionality effect which implies that SPS and SBPS converge arbitrarily faster in higher
dimensions than their Euclidean analogues. See Section 3 and Section 6.
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7. We introduce generalisations of stereographic projection which are suitable for ellip-
tical targets. See Section 4. The framework we established in this paper opens opportunities
for developing other mappings from R

d to S
d for other classes of targets. See Section 7.

In very recent work, Lie et al. (2023) presents a related methodology for exploring distribu-
tions defined directly on a manifold, providing supporting theory showing that under suitable
conditions their method’s spectral gap is dimension-independent. However, the focus of their
work is very different. Their work uses a different reprojection scheme based on Cotter et al.
(2013) and does not consider distributions defined directly on R

d . Moreover, they consider
densities that are absolutely continuous with respect to a Gaussian measure in the infinite-
dimensional limit. This is arguably a very restrictive class. So their dimension-independent
results are not really comparable with our results. An alternative reprojection scheme is intro-
duced in Zappa, Holmes-Cerfon and Goodman (2018). Compared to that method, the repro-
jection scheme used in this paper has the advantage that reprojection from a fixed point on the
tangent space is always possible and is a much more natural approach for the hypersphere.
The Zappa, Holmes-Cerfon and Goodman (2018) method does have advantages for use in
more general manifolds, but this is not of any use to us here.

There are strong theoretical reasons for wanting to construct the algorithm dynamics di-
rectly on a manifold of positive curvature such as a hypersphere (Mangoubi and Smith (2018),
Ollivier (2009), Mijatović, Mramor and Uribe Bravo (2018)). However, quite naturally, the
existing literature has concentrated primarily on the case of Brownian motion which clearly
has the uniform invariant distribution on S, or on the geodesic walk designed specifically
to target uniform distributions on manifolds. The uniform distribution on S maps via stereo-
graphic projection to the Student’s t distribution with d degrees of freedom on R

d . Therefore,
we can immediately lift theory from existing theory to (informally) show that SPS on such
target densities has a dimension-free convergence time. In our paper, we go further. Rapid
convergence extends to a large family of spherically symmetric target densities (essentially
excluding only very heavy-tailed distributions).

However the proposed algorithms are not only applicable for stylized classes of target
distributions. To showcase the practical value of stereographic samplers in more realistic sta-
tistical contexts, we shall demonstrate the utility of our methodology on a Bayesian analysis
of a Cauchy regression model. Full specification of the model, its parameter values and other
details will be given in Section 6.1.

EXAMPLE 1.1. Consider Yi ∼ Cauchy(α + βT Xi, γ ), where {Xi,Yi}ni=1 are the design
matrices and responses, respectively, α ∈ R, β ∈R

d−2, γ ∈ R
+ are the parameters. Assume a

flat prior for α and β , a Gamma(a, b) prior for γ (i.e., π0(γ ) ∝ γ a−1 exp(−bγ )), the posterior
can be written by

π(α,β, γ ) ∝ γ a−1−n exp(−bγ )∏n
i=1{1 + [Yi−(α+βT Xi)

γ
]2}

.(1)

For sampling the posterior, we compare SPS and RWM in Figure 1, where we plot the trace-
plots for α, β1 (the first coordinate of β), and log(γ ), as well as (α,β1) for both algorithms.
From the figure, one can see clearly that: (1) RWM which is not geometric ergodic completely
failed; (2) the proposed SPS which is uniformly ergodic converged extremely fast.

Our paper is structured as follows. Section 2 introduces both SPS and SBPS algorithms
and presents formal ergodicity and uniform ergodicity results for both methods. Sections 3
to 5 provide additional results for SPS and its generalisations. In Section 3, a detailed analy-
sis of SPS for isotropic densities is provided, while in Section 4, a generalised version of the
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FIG. 1. Bayesian Cauchy Regression. Red dotted lines and circles represent the parameters of the true sampling
distribution.

algorithm is introduced. Section 4 also gives robustness results to departures from isotropy.
In Section 5, we provide a high-dimensional analysis of SPS for the stylised family of prod-
uct i.i.d. target densities and give positive comparisons to the Euclidean RWM algorithm.
Numerical studies on both SPS and SBPS are provided in Section 6 to illustrate our theory
and we conclude with the discussions on SPS and SBPS in Section 7. The Supplementary
Material (Yang, Łatuszyński and Roberts (2024)) contains all the technical proofs and some
additional simulations.

2. Stereographic Markov chain Monte Carlo.

2.1. Stereographic Projection Sampler (SPS). We begin by giving a brief description of
stereographic projection and then describe in detail two novel MCMC samplers that exploit
the properties of stereographic projection.

Let Sd denote the unit sphere in R
d+1 centered at the origin. A stereographic projection de-

scribes a bijection from S
d \ {(0, . . .0,1)} to R

d . Within this paper, we shall restrict attention
to projections indexed by a single parameter R ∈ R

+ and described by the mapping

x = SP(z) :=
(
R

z1

1 − zd+1
, . . . ,R

zd

1 − zd+1

)T

,

with Jacobian determinant at x ∈ R
d satisfying

(2) JSP(x) ∝ (
R2 + ‖x‖2)d

,
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FIG. 2. Illustration of Stereographic Projection SP : S →R.

and inverse SP−1 :Rd → S
d \ {(0, . . .0,1)} given by

zi = 2Rxi

‖x‖2 + R2 ∀1 ≤ i ≤ d, zd+1 = ‖x‖2 − R2

‖x‖2 + R2 .(3)

See Figure 2 for a geometric illustration of this stereographic projection (in the case d = 1 for
simplicity) and the Supplementary Material (Yang, Łatuszyński and Roberts (2024), S8.13)
for the proof of the Jacobian determinant equation (2).

Now suppose we wish to sample from a target density π(x) where x ∈ R
d . Our aim is

to take advantage of our stereographic bijection to construct an MCMC sampler directly on
S

d , projecting the output back onto R
d . We denote the transformed target as πS(z) then for

x = SP(z) we have

πS(z) ∝ π(x)
(
R2 + ‖x‖2)d

.(4)

First, we just consider a random-walk Metropolis algorithm with a step size h on the unit
sphere. Note that we describe our algorithms on the unit sphere. The radius R will only be
taken into account when projecting to R

d . Figure 3 illustrates how the algorithm moves are
constructed on the unit sphere, and pseudo-code for the algorithm is given in Algorithm 1.
(Note that we could very easily have constructed more general Metropolis–Hastings algo-
rithms.)

The symmetry of the reprojection mechanism in the proposal of the algorithm means that
SPS is indeed a valid MCMC algorithm for π . More formally, we have the following result.

PROPOSITION 2.1. If π(x) is positive and continuous in R
d , then SPS gives rise to an

ergodic Markov chain on R
d with invariant distribution π .

FIG. 3. Illustration of SPS proposing ẑ = SP−1(X̂) from z = SP−1(x). By symmetricity, the proposal distribu-
tion is the same as proposing z from ẑ.
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Algorithm 1: Stereographic Projection Sampler (SPS)

• Let the current state be Xd(t) = x;
• Compute the proposal X̂:

– Let z := SP−1(x);
– Sample independently dz̃ ∼ N (0, h2Id+1);

– Let dz := dz̃ − (zT ·dz̃)z

‖z‖2 and ẑ := z+dz
‖z+dz‖ ;

– The proposal X̂ := SP(ẑ).

• Xd(t + 1) = X̂ with probability 1 ∧ π(X̂)(R2+‖X̂‖2)d

π(x)(R2+‖x‖2)d
; otherwise Xd(t + 1) = x.

PROOF. See the Supplementary Material (Yang, Łatuszyński and Roberts (2024), S8.1).
�

We shall address the chain’s uniform ergodicity properties. Recall that a Markov chain X

on state space E with transition kernel P is uniformly ergodic if ∀ε > 0, there exists, N ∈ N

such that ‖P N(x, ·) − π‖TV ≤ ε, ∀x ∈ E, where π denotes the chain’s (unique) invariant
distribution and ‖ · ‖TV represents total variation distance. Intuitively, for uniformly ergodic
chains, we cannot have “arbitrarily bad” starting values.

It is long recognised that random-walk Metropolis (RWM) algorithms on bounded spaces
are usually uniformly ergodic, while the same algorithms on unbounded spaces are never uni-
formly ergodic (Mengersen and Tweedie (1996)). Therefore, given the compactness of Sd , it
is reasonable to hope that SPS might be uniformly ergodic under mild regularity conditions
on π . Since the actual state space of SPS is in fact Sd \N which is not compact, this question
is more complicated than in the Euclidean state space case as we need to consider the prop-
erties of the transformed density near N . However, our first main result confirms that we do
get uniform ergodicity if and only if the transformed density on the sphere is bounded at N .

THEOREM 2.1. If π(x) is positive and continuous in R
d , then SPS is uniformly ergodic

if and only if

sup
x∈Rd

π(x)
(
R2 + ‖x‖2)d

< ∞.(5)

PROOF. See the Supplementary Material (Yang, Łatuszyński and Roberts (2024), S8.2).
�

EXAMPLE 2.1. If the target π(x) where x ∈ R
d is multivariate Student’s t distribution

with degrees of freedom no smaller than d , then the SPS algorithm is uniformly ergodic.

REMARK 2.1. We make the following remarks:

1. The condition equation (5) is necessary: if supx∈Rd π(x)(R2 + ‖x‖2)d = ∞, then the
chain is not even geometrically ergodic (Roberts and Tweedie (1996a), Proposition 5.1);

2. The traditional RWM algorithm is not uniformly ergodic if the support of π is R
d

(Mengersen and Tweedie (1996), Theorem 3.1) and not geometrically ergodic for any heavy-
tailed target distribution (Jarner and Hansen (2000), Corollary 3.4);

3. The condition that π(x) is positive and continuous in R
d in both Proposition 2.1 and

Theorem 2.1 can be relaxed. We used it here just for the simplicity of the proof.
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Algorithm 2: Stereographic Bouncy Particle Sampler (SBPS)

• Initialize z(0) ∈ S
d and v(0) such that v(0) · z(0) = 0 and ‖v(0)‖ = 1.

• Simulate BPS on unit sphere: for i = 1,2, . . .

– Simulate bounce time τbounce of a Poisson process of intensity

χ(t) = λ
(
sin(t)v(i−1) + cos(t)z(i−1), cos(t)v(i−1) − sin(t)z(i−1)),

where

λ(z, v) := max
{
0,

[−v · ∇z logπS(z)
]}

.

– Simulate refreshment time τrefresh ∼ Exponential(λrefresh).
– Let τi = min{τbounce, τrefresh} and

z(i) = sin(τi)v
(i−1) + cos(τi)z

(i−1).

– If τi = τrefresh, sample new v(i) independently

v(i) ∼ Uniform
{
v : z(i) · v = 0,‖v‖ = 1

}
– If τi = τbounce, compute

v(i) = vtemp − 2
[

vtemp · ∇̃z logπS(z(i))

∇̃z logπS(z(i)) · ∇̃z logπS(z(i))

]
∇̃z logπS

(
z(i)),

where

vtemp = cos(τi)v
(i−1) − sin(τi)z

(i−1)

∇̃z logπS

(
z(i)) = ∇z logπS

(
z(i)) − [

z(i) · ∇z logπS

(
z(i))]z(i).

– If
∑i

j=1 τj ≥ T (where T is some constant time), exit.
• Return x = SP(z) where z denotes BPS on unit sphere.

2.2. Stereographic Bouncy Particle Sampler (SBPS). Many recent innovations in MCMC
algorithm construction have focused on nonreversible methods, most particularly those de-
scribed by piecewise deterministic Markov processes (PDMPs) (see, e.g., Bouchard-Côté,
Vollmer and Doucet (2018), Bierkens, Fearnhead and Roberts (2019) and Davis (1984) for
theoretical background). PDMPs are continuous-time processes that have stochastic jumps
at event times of a point process, but where the state evolves deterministically between the
event times. In this subsection, we shall demonstrate that we can readily incorporate these
methods within our projective framework. We shall concentrate on a version of the Bouncy
Particle Sampler (BPS) (Bouchard-Côté, Vollmer and Doucet (2018)) as this adapts naturally
to our context. The algorithm (Algorithm 2) is described as follows.

PDMPs utilise an auxiliary random variable v, which in the case of the Stereographic
Bouncy Particle Sampler (SBPS) has stationary distribution uniformly distributed on S

d and
independently of x. One feature of PDMP algorithms such as SBPS is the option to include
refresh moves that contribute to the intensity of their constituting point process (according to
some possibly x-dependent hazard rate) and which independently refresh v by sampling it
from its invariant distribution (uniform on S

d ). In the description below, we restrict ourselves
to the case where this refresh rate is constant.

Again, we demonstrate that SBPS is indeed a valid MCMC algorithm, at least under certain
conditions on π and the refresh rate in the algorithm. Note that the conditions on π and
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λrefresh in Proposition 2.2 are not required for invariance, only for ensuring φ-irreducibility
of the algorithm.

PROPOSITION 2.2. Suppose that λrefresh > 0 and π > 0 for all x ∈ R
d . Then SBPS gives

rise to an ergodic Markov chain on R
d with invariant distribution for (x, v) with joint density

on R
d × S

d . The marginal density on R
d is proportional to π(x).

PROOF. The proof of this result is routine (but tedious), following the lines of existing
results for PDMPs in the literature. We give a sketch proof in Yang, Łatuszyński and Roberts
(2024), S8.3. �

We shall prove a uniform ergodicity result analogous to that of Theorem 2.1. For a Markov
process X with state space E, transition semi-group P , and invariant distribution π , it is
uniformly ergodic if ∀ε > 0 there exists T such that ‖P T (x, ·) − π‖TV ≤ ε, ∀x ∈ E.

THEOREM 2.2. If π(x) is positive in R
d with continuous first derivative in all compo-

nents, then SBPS is uniformly ergodic if

lim sup
{x:‖x‖→∞}

d∑
i=1

(
∂ logπ(x)

∂xi

xi

)
+ 2d <

1

2
.

PROOF. See the Supplementary Material (Yang, Łatuszyński and Roberts (2024), S8.4).
�

COROLLARY 2.1. If the target π(x) where x ∈ R
d is multivariate Student’s t distribution

with degrees of freedom larger than d − 1
2 , then the SBPS algorithm is uniformly ergodic.

PROOF. See the Supplementary Material (Yang, Łatuszyński and Roberts (2024), S8.5).
�

REMARK 2.2. We make the following remarks:

1. This is the first known PDMP algorithm that is uniformly ergodic for a large fam-
ily of target distributions including heavy-tailed targets. For comparison, the Euclidean BPS
is only known to be geometrically ergodic under certain restrictive conditions on the target
(Deligiannidis, Bouchard-Côté and Doucet (2019), Durmus, Guillin and Monmarché (2020))
and is known not to be geometrically ergodic for any heavy-tailed target distribution (Vas-
dekis and Roberts (2023)).

2. We conjecture that the best possible condition for Theorem 2.2 is

lim sup
{x:‖x‖→∞}

d∑
i=1

(
∂ logπ(x)

∂xi

xi

)
+ 2d < 1.

We explain the reason for our conjecture in Yang, Łatuszyński and Roberts (2024), S8.6.
Therefore, we conjecture that Corollary 2.1 is only loose by 1

2 degree. That is, if the target
π(x) where x ∈ R

d is multivariate Student’s t distribution with degree of freedom larger than
d − 1, then the SBPS algorithm is conjectured to be uniformly ergodic.

To finish this section, we present some typical sample paths obtained by implementing
SBPS.

EXAMPLE 2.2. In Figure 4, we show the proposed SBPS without and with refreshment
for standard Gaussian target in two dimensions. Note that the SBPS without refreshment is
not irreducible in this case. The same issue exists for the Euclidean BPS for standard Gaussian
targets. This issue can be fixed by adding the refreshment.
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FIG. 4. SBPS without (left) and with (right) refreshment for target distribution N (0, I2). Note that the SBPS
chain is not irreducible without refreshment.

3. SPS: Isotropic targets. In this section, we consider isotropic targets, which is also
called spherical symmetric targets.1 That is, π(x) is only a function of ‖x‖. Recall the map-
ping and equation (3) and the transformed target πS(z) in equation (4). We can see that, for
any isotropic target, the transformed target πS(z) is only a function of the “latitude” zd+1. In
this sense, isotropic targets are the “best” targets for stereographically projected algorithms.

We shall assume that all second moments exist, and without loss of further generality, we
suppose π(x) satisfies that

EX∼π

[‖X‖2] = d.

Under this assumption, the “optimal” radius should be chosen as R = √
d , since it maps the

concentration region of π to the neighborhood of the “equator” of the sphere. Throughout
this section, we study this best scenario. We will study the robustness to R and the optimal
scaling of SPS for any given R in Section 5 for another family of targets.

Under the above assumptions, it suffices to study the path of the absolute value of the
“latitude” zd+1 of SPS. Informally, the “stationary phase” of SPS is the period in which
zd+1 = O(d−1/2) and the “transient phase” is the period in which |zd+1| is larger than
O(d−1/2). Somehow surprisingly, by analyzing the proposed “latitude” ẑd+1, we can (infor-
mally) show that the SPS enjoys the blessings of dimensionality: the number of iterations for
the “latitude” of SPS to decrease to O(d−1/2) decreases with the dimension d . This implies
(informally) that the “transient phase” of SPS is O(1) and it decreases with dimension.

3.1. Analysis of the proposal distribution. We assume the chain starts from either the
North Pole or the South Pole. By the assumptions, the chain is in the “stationary phase” once
it is around the “equator”.

In the following, we give useful approximations for the proposed “latitude” ẑd+1 in both
the transient phase and stationary phase. This can be used to analyze the behavior of isotropic
targets. See Yang, Łatuszyński and Roberts (2024, S9.1, for some simulations using the result
from Lemma 3.1.

1Note that in some literature, isotropic distribution could be used to denote a distribution with zero mean and
identity covariance matrix, which is different from our definition in this paper.
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LEMMA 3.1. Let zi be the current ith coordinate and ẑi be the ith coordinate of the
proposal, where i = 1, . . . , d + 1. Then we have the following expression:

ẑi = 1√
1 + h2(U2 + U2⊥)

(
zi +

√
1 − z2

i hU
)
,(6)

where U ∼ N (0,1) and U2⊥ ∼ χ2
d−1 which is independent with U . Furthermore, if h =

O(d−1/2), then we have the following coordinatewise approximation:

ẑi = 1√
1 + h2U2⊥

[(
1 − 1

2
h2U2

)
zi −

√
1 − z2

i hU

]
+OP

(
h3 + dh4zi

)
.(7)

As special cases of equation (7), zd+1 is the current “latitude” and ẑd+1 be the proposed
“latitude”. Then, in the transient phase, if z2

d+1 = 1 − o(h2), we have

ẑd+1 = 1√
1 + h2(d − 1)

(
1 − 1

2
h2U2

)
zd+1 +OP

(
d−1/2)

,(8)

and in the stationary phase, if zd+1 = O(d−1/2), we have

ẑd+1 = 1√
1 + h2(d − 1)

(zd+1 − hU) +OP

(
d−1)

.(9)

PROOF. See the Supplementary Material (Yang, Łatuszyński and Roberts (2024), S8.7).
�

The above lemma informally suggests that in the “transient phase”, the proposed “lati-
tude” is almost deterministic, whereas in the “stationary phase”, the proposed “latitude” ap-
proximately follows an autoregressive process. For example, if we take h to be constant and
i = d + 1, then equation (6) shows that the proposal “latitude” ẑd+1 decreases to O(d−1/2)

faster when dimension is larger since the concentration of U2⊥/d . If the proposals will be
accepted by a probability bounded away from 0, the “transient phase” of SPS only involve
O(1) iterations and the number even decreases with the dimension. As an example, in the
next subsection, we show a class of isotropic targets such that the SPS enjoys the blessings
of dimensionality.

3.2. Examples of isotropic targets. We denote the multivariate Student’s t distributions
by πν(x) where ν is the degree of freedom. We denote the standard multivariate Gaussian as
the limit π∞(x). That is,

πν(x) ∝
(

1 + 1

ν
‖x‖2

)−(ν+d)/2
, π∞(x) ∝ exp

(
−1

2
‖x‖2

)
.

Then the logarithm of the likelihood ratio can be written as a function of zd+1 and ẑd+1:

log
πν(X̂)

πν(x)
+ d log

R2 + ‖X̂‖2

R2 + ‖x‖2 = d
(
gν/d(zd+1) − gν/d(ẑd+1)

)
,

where gk(z) := k+1
2 log(k + 1+z

1−z
)+ log(1 − z). If k = ν/d → ∞, we have gk(z) converges to

g∞(z) := 1
1−z

− 1
2 + log(1 − z) up to a constant. See Yang, Łatuszyński and Roberts (2024),

S9.2, for the plots of the function of gk(z) for different values of k.

EXAMPLE 3.1. (Multivariate Student’s t distribution with DoF ν = d) It can be easily
verified that g1(z) = log(2). Therefore, any proposal will be accepted since the acceptance
rate is always 1 whatever h is.
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Algorithm 3: Generalized Stereographic Projection Sampler (GSPS)

• Let the current state be Xd(t) = x;
• Compute the proposal X̂:

– Let z := GSP−1(x);
– Sample independently dz̃ ∼ N (0, h2Id+1);

– Let dz := dz̃ − (zT ·dz̃)z

‖z‖2 and ẑ := z+dz
‖z+dz‖ ;

– The proposal X̂ := GSP(ẑ).

• Xd(t + 1) = X̂ with probability 1 ∧ π(X̂)(R2+‖X̂‖2

,Q)d

π(x)(R2+‖x‖2

,Q)d

; otherwise Xd(t + 1) = x.

EXAMPLE 3.2. (Multivariate Student’s t distribution with DoF ν > d , including Gaus-
sian) From Lemma 3.1, one can see informally: (i) in the “transient phase”, as the proposed
“latitude” is almost deterministic which has higher target density, the acceptance probability
is almost 1 starting from either the North Pole or the South Pole; (ii) In the “stationary phase”,
as the proposed “latitude” approximately follows an autoregressive process, the acceptance
rate is well-approximated by a positive constant. This suggests that as long as the target has
a “lighter tail” than multivariate Student’s t with DoF d , the “transient phase” of SPS takes
at most O(1) steps. For comparison, for the standard multivariate Gaussian target, the “tran-
sient phase” of the Euclidean RWM takes O(d) steps (Christensen, Roberts and Rosenthal
(2005)).

REMARK 3.1. Our theoretical results don’t cover the cases of SPS for targets with heavier
tails, such as multivariate Student’s t with DoF ν < d . In this case, the SPS cannot start from
the North Pole since the first proposal of the SPS will be rejected with probability 1. One
might consider to start from the South Pole. However, the SPS could get stuck at the South
Pole if the proposal variance is large (even if the origin is the mode of the target density). See
Yang, Łatuszyński and Roberts (2024, S8.12, for comments. In practice, we suggest choosing
the initial state of the SPS as a random state uniformly sampled on the sphere.

4. SPS: Extension to elliptical targets.

4.1. Extensions of stereographic projection. Same as the previous section, we denote the
state of the Markov chain by x = (x1, . . . , xd)T ∈ R

d . Suppose z = (z1, . . . , zd+1)
T is the

coordinates of a unit sphere in R
d+1 (that is, ‖z‖ = 1).

Now, we map z ∈ S
d to x ∈ R

d by the generalized stereographic projection (GSP)

x = GSP(z) := Q

(
R

√
λ1

z1

1 − zd+1
, . . . ,R

√
λd

zd

1 − zd+1

)T

,

where R is the radius parameter, QT = Q−1 ∈ R
d×d is a rotation matrix, {λ1, . . . , λd} are

nonnegative constants. That is, the GSP is obtained by “stretching” via {λi} and “rotating”
via Q from the SP.

Defining the norm

‖x‖2

,Q := xT Q
−1QT x,

where 
 = Diag{λ1, . . . , λd}, we have the following Generalized Stereographic Projection
Sampler (GSPS, Algorithm 3) with parameters R, h, 
, Q.
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Note that even though GSPS can be formulated alternatively as using “ellipsoid” instead of
“sphere”, this is not our formulation. We still use the unit sphere to compute ẑ for GSPS and
only replace the mapping SP by GSP. That is, we only “stretch” and “rotate” the proposal ẑ

via GSP when projecting to R
d .

The following example shows that we can extend isotropic targets to elliptical targets using
the GSPS.

EXAMPLE 4.1. Suppose π(x) is multivariate Student’s t with covariance matrix ν
ν−2� =

ν
ν−2Q
QT where 
 = Diag{λ1, . . . , λd}:

π(x) ∝
(

1 + 1

ν
xT �−1x

)−(ν+d)/2
.

Then, for the GSPS with the corresponding Q and 
, and R2 = ∑
i λi , the acceptance rate is

always 1 for any h.

The GSPS naturally suggests that one can estimate � = Q
QT under the adaptive
MCMC framework, which results in adaptive GSPS. Indeed, if both 
 and Q are known,
then one can normalize GSPS and reduce it to SPS, which is GSPS with � = Id .

As the robustness to estimations of the mean and the covariance matrix of the target is the
key to the success of adaptive GSPS, we study the robustness of Gaussian targets in the next
section.

4.2. Robustness for Gaussian targets. We consider multivariate Gaussian targets with
mean vector μ and covariance matrix �:

πμ,�(x) ∝ exp
(
−1

2
(x − μ)T �−1(x − μ)

)
,

where

� = Diag(λ1, . . . , λd), μ = (μ1, . . . ,μd)T .

We are interested in the robustness when μ �= 0 and � �= Id .
For comparison with the traditional RWM in R

d on the orders of stepsize, we recall that
the optimal scaling theory gives an optimal stepsize of O(d−1/2) for RWM (Roberts, Gelman
and Gilks (1997)). Our stepsize h is defined on the unit sphere. When projecting to R

d , we
multiply by R = O(d1/2). Therefore, the optimal stepsize of RWM roughly corresponds to
h = O(d−1) in our setting. In this subsection, we study how large the stepsize h can be so the
expected acceptance probability of SPS goes to 1. This roughly corresponds to a stepsize of
O(hd1/2) in R

d . Our results show that the order of the stepsize of SPS when projected back
to R

d is always no smaller than the order of the optimal stepsize of RWM.

THEOREM 4.1. Assume there exist constants C < ∞ and c > 0 such that c ≤ λi ≤ C and
|μi | ≤ C for all i = 1, . . . , d . Furthermore, assume R = d1/2 and∣∣∣∣∣

d∑
i=1

μ2
i −

d∑
i=1

(1 − λi)

∣∣∣∣∣ =O
(
dα)

,(10)

where α ≤ 1. Then, under stationarity that X ∼ π , the expected acceptance probability con-
verges to 1 as d → ∞

EX∼πμ,�EX̂ |X
[
1 ∧ πμ,�(X̂)(R2 + ‖X̂‖2)d

πμ,�(X)(R2 + ‖X‖2)d

]
→ 1,
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for all h such that

h = o

(
d−1√

max{ 1
d

∑
i |1 − λi |, 1

d

∑
i μ

2
i }

∧ d−( 1
2 ∨α)

)
.(11)

PROOF. See the Supplementary Material (Yang, Łatuszyński and Roberts (2024), S8.8).
�

Note that for the standard Gaussian target, we know that the acceptance rate goes to 1 as
d → ∞ for any h. Recall that for traditional RWM in dimension k, the optimal stepsize is
O(k−1/2) in R

k under the optimal scaling framework (Roberts, Gelman and Gilks (1997)),
which corresponds to h = O(k−1/2d−1/2) in the SPS setting. Therefore, Theorem 4.1 sug-
gests that the “effective dimension” is determined by {μi} and {λi}: as long as {λi} and {μi}
are uniformly bounded, the “effective dimension” of SPS is never larger than d , which is the
“effective dimension” of the traditional RWM. Furthermore, we can compare the “effective
dimension” for SPS with d using Theorem 4.1 under different settings.

EXAMPLE 4.2. Suppose μi = 0 for all i = 1, . . . , d . Moreover, λ1 = λ2 = · · · = λk = 2
and λk+1 = · · · = λd = 1, then as long as k is a fixed number, 1

d

∑
i |1 − λi | = O(kd−1). By

Theorem 4.1, when h = o(k−1/2d−1/2) then the acceptance rate goes to 1 as d → ∞. This
suggests that the “effective dimension” for SPS is no more than k.

EXAMPLE 4.3. Suppose λi = 0 for all i = 1, . . . , d . Furthermore, μ1 = μ2 = · · · = 1
and μk+1 = · · · = μd = 0 where k is a fixed number. Then we have 1

d

∑
i μ

2
i = O(kd−1).

By Theorem 4.1, the acceptance rate goes to 1 when h = o(k−1/2d−1/2), which implies the
“effective dimension” for SPS is no more than k.

One can consider Theorem 4.1 in the context of adaptive MCMC for Gaussian targets,
in which {μi} and {1 − λi} represent the “estimation errors” of the coordinate means and
eigenvalues of the covariance matrix of the target. One can choose the “radius” R of the
stereographic projection properly to satisfy equation (10) with α = 1

2 . This is to properly
scale R so that the “latitude” on the unit sphere of the SPS is OP(d

−1/2). Then, according
to Theorem 4.1, the “effective dimension” of SPS is smaller than d if 1

d

∑
i |1 − λi | = o(1)

and 1
d

∑
i μ

2
i = o(1). However, the above results on “effective dimension” are based on The-

orem 4.1, which only hold for Gaussian targets. For more results on robustness and opti-
mal acceptance rate for adaptive MCMC, we will study another family of targets in Sec-
tion 5.

Finally, we show two examples that the result of Theorem 4.1 is tight. First, consider the
special case that μi = μ > 0 and λi = σ 2 for all i. We assume μ2 = 1 − σ 2 so that equa-
tion (10) holds for any α ≤ 1/2. Then equation (11) suggests that the acceptance probability
goes to zero if h = o(d−1/μ). On the other hand, the target in this special case is a prod-
uct i.i.d. target with marginal distribution N (μ,1 − μ2). By our optimal scaling results in
Section 5, we know that the acceptance probability does not go to zero if h = O(d−1/μ)

(see Lemma 5.1 and Corollary 5.2). Therefore, equation (11) is tight. Second, consider
the special case that μi = μ = 0 and λi = σ 2 �= 1 for all i. Then equation (10) holds for
α = 1. In this case, equation (11) suggests that the acceptance probability goes to zero if
h = o(d−α) = o(d−1). On the other hand, the target in this special case is a product i.i.d. tar-
get with marginal N (0, σ 2) where σ 2 �= 1. If we properly rescale R and σ 2, it reduces to the
case of Lemma 5.1 where the target is the standard Gaussian but R �= d1/2. Therefore, by
Lemma 5.1, the acceptance probability doesn’t converge to zero if h = O(d−1). Therefore,
equation (11) is again tight.
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5. SPS in high-dimensional problems. In this section, we shall give a case study of the
behavior of SPS for high-dimensional target densities. We shall consider various limits of
SPS as d → ∞ though to have tractability of this limit we need to consider a very specialised
class of target densities. To this end, analogous to Roberts, Gelman and Gilks (1997) we
assume the target π(x) has a product i.i.d. form.

5.1. Assumptions on π . We assume the target π(x) has a product i.i.d. form:

π(x) =
d∏

i=1

f (xi).(12)

Without loss of generality, we assume f is normalized such that

Ef

(
X2) =

∫
x2f (x)dx = 1, Ef

(
X6)

< ∞.(13)

We further assume f ′/f is Lipschitz continuous, limx→±∞ xf ′(x) = 0, and

Ef

[(
f ′(X)

f (X)

)8]
< ∞, Ef

[(
f ′′(X)

f (X)

)4]
< ∞, Ef

[(
Xf ′(X)

f (X)

)4]
< ∞.(14)

REMARK 5.1. Under the assumption Ef (X2) = 1, by Cauchy–Schwarz inequality

Ef

[(
(logf )′

)2] ≥ 1,

where the equality is achieved by standard Gaussian (or truncated standard Gaussian). For

univariate Student’s t distribution with any DoF = ν > 2, rescaling by a factor
√

ν−2
ν

, we can

obtain a target density fν with Efν (X
2) = 1 and

Cν := Efν

[(
(logfν)

′)2] =
(

ν

ν − 2

)(
ν + 1

ν

)(
ν + 4

ν + 3

)√
ν + 4

ν
> 1,

where ν → ∞ recovers the case for the standard Gaussian target. See Table 1 for values of
Cν for different ν. One can see that Cν is very close to 1 for even a medium size of ν.

In this section, we consider f has full support in R. Then the product i.i.d. target π is not
isotropic unless it is the standard Gaussian.

5.2. Acceptance probability. To make progress, we need a detailed understanding of the
high-dimensional behavior of the acceptance probability of SPS. It turns out that to optimally
apply SPS, we need to scale R to be O(d1/2). Not doing this will concentrate mass at either
the North or South polls in an ultimately degenerate way. We shall thus assume R to be
scaled in this way in what follows. Therefore, we consider R = √

λd for a fixed constant λ.
To simplify the final result, we replace the step size h by another parameter ℓ via

(15) h = 1√
d − 1

[
1

(1 − ℓ2

2d
4λ

(1+λ)2 )
2

− 1
]1/2

TABLE 1
Examples of Cν and Cν/(Cν − 1) for different ν in Remark 5.1 and Remark 5.4

ν = 3 ν = 5 ν = 10 ν = 20 ν = 50 ν = 100

Cν 7.1285 3.0187 1.7521 1.3336 1.1250 1.0612
Cν/(Cν − 1) 1.1632 1.4954 2.3297 3.9977 8.9990 17.3328
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which implies 1√
1+h2(d−1)

= 1 − ℓ2

2d
4λ

(1+λ)2 . Note that ℓ is simply a reparameterization of h.

When ℓ is a fixed constant, h is scaled as O(d−1) since h ≈ ℓ
d

√
4λ/(1 + λ)2.

LEMMA 5.1. Under the assumptions on π in Section 5.1, suppose the current state
X ∼ π , and the parameter of the algorithm R = √

λd , where λ > 0 is a fixed constant. We
reparameterize h by ℓ according to equation (15). Then, if either λ �= 1 or f is not the stan-
dard Gaussian density, there exists a sequence of sets {Fd} such that π(Fd) → 1 and

sup
X∈Fd

E
X̂|X

[∣∣∣∣1 ∧ π(X̂)(R2 + ‖X̂‖2)d

π(X)(R2 + ‖X‖2)d
− 1 ∧ exp(W

X̂|X)

∣∣∣∣
]

= o
(
d−1/4 log(d)

)
,

where W
X̂|X ∼ N (μ,σ 2) and

μ = ℓ2

2

{
4λ

(1 + λ)2 −Ef

[(
(logf )′

)2]}
, σ 2 = ℓ2

{
Ef

[(
(logf )′

)2] − 4λ

(1 + λ)2

}
.

PROOF. See the Supplementary Material (Yang, Łatuszyński and Roberts (2024), S8.9).
�

REMARK 5.2. Lemma 5.1 requires either λ �= 1 or π is not the standard multivariate
Gaussian. If λ = 1 and π is the standard multivariate Gaussian, the case reduces to isotropic
targets discussed in Section 3.2, so the Gaussian approximation in Lemma 5.1 doesn’t hold.

5.3. Optimisation and robustness of SPS. Note that Lemma 5.1 suggests that the ex-
pected acceptance probability in the stationary phase

EX∼πEX̂ |X
[
1 ∧ π(X̂)(R2 + ‖X̂‖2)d

π(X)(R2 + ‖X‖2)d

]
→ 2�

(
−σ

2

)
.

Furthermore, as E[‖X̂ − X‖2] → ℓ2, we obtain the commonly used approximation of Ex-
pected Squared Jumping Distance (ESJD):

(16)

E
[‖X̂ − X‖2] ·E

[
1 ∧ π(X̂)(R2 + ‖X̂‖2)d

π(X)(R2 + ‖X‖2)d

]

→ 2ℓ2 · �
(
−ℓ

2

√
Ef

[(
(logf )′

)2] − 4λ

(1 + λ)2

)
.

In this subsection, we shall explicitly consider the optimisation of SPS, and take a close
look at its relative performance in comparison to standard Euclidean RWM. All the results
in this section to date have used the convenient restriction that Ef (X2) = 1. However, at this
point we shall need to generalise this notion. Therefore, consider density f to have mean m

and variance s2.
We consider SPS with R = √

λ(s2 + m2)d . and stepsize h = 1√
d−1

[ 1

(1− ℓ2
2d

4λ

(1+λ)2
)2

− 1]1/2.

We shall denote this algorithm’s approximate limiting ESJD by E(ℓ,m, s, λ) and its corre-
sponding acceptance probability: A(ℓ,m, s, λ). The following result is a direct consequence
of equation (16) applied to a scaled density (dividing by

√
s2 + m2):

E(ℓ,m, s, λ) =
√

s2 + m2 · 2ℓ2�

(−ℓ

2

√
Ĩ (s,m,λ)

)
,

A(ℓ,m, s, λ) = 2�

(−ℓ

2

√
Ĩ (s,m,λ)

)
,

where Ĩ (s,m,λ) = (s2 + m2)I − 4λ
(1+λ)2 and I = Ef ((logf )′(X)2).
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We note that we can readily recover the the corresponding quantities for RWM:
E(ℓ,m, s,∞) and A(ℓ,m, s,∞). In particular, to consider robustness, we shall consider
the relative performance ratio

R̃(m, s, λ) := supℓ E(ℓ,m, s, λ)

supℓ E(ℓ,m, s,∞)
.

To get an expression for R̃, we shall follow the standard approach of Roberts, Gelman and
Gilks (1997) of expressing the efficiency in terms of acceptance rate. To that end, we define

Ẽ(A,m, s, λ) := E
(
ℓ(A),m, s, λ

)
,

where ℓ is chosen to be the unique solution to A(ℓ(A),m, s, λ) = A. A simple calculation
yields the following.

COROLLARY 5.1. We have Ẽ(A,m, s, λ) = A · �−1(A
2 ) · 4(s2+m2)

Ĩ (s,m,λ)
and R̃(m, s, λ) =

(s2+m2)I

Ĩ (s,m,λ)
= 1

1−α·β·γ , where α = 4λ
(1+λ)2 , β = s2

s2+m2 , γ = 1
s2I

. Since all of α, β , γ are in [0,1],
In this situation, SPS is never less efficient than Euclidean RWM.

REMARK 5.3. Primarily, Corollary 5.1 is a robustness result. However, it also highlights
the (only) ways in which SPS can fail to outperform Euclidean RWM. The three constants α,
β , γ characterise different sensitivities of the algorithm.

α measures the penalty due to misspecification of the sphere radius. 4λ/(1+λ)2 is optimised
at λ = 1 when there is no penalty for misspecification of the target distribution dispersion.

β describes the penalty due to mislocation of the hyper-sphere. It is seen that the optimal
choice is to locate the sphere at the mean of the target distribution.

γ is a distribution-specific penalty. It is straightforward by to check by functional calculus
that γ ≤ 1 with equality achieved only in the case where the target density is Gaussian.
Thus γ is characterising proximity to Gaussianity.

From this result, it can be seen that we can only achieve super-efficiency (convergence com-
plexity more rapid than O(d)) when all three parameters, α, β and γ are close to (and con-
verging to) unity.

5.4. Maximizing ESJD. In this subsection, we consider λ = 1 only (i.e., R = √
d) and

prove that the approximate limiting ESJD in equation (16) is indeed the limiting maximum
ESJD. We will demonstrate (again analogously to Roberts, Gelman and Gilks (1997)) that its
limit is optimised by targeting an acceptance probability of 0.234.

DEFINITION 5.1. Expected Squared Jumping Distance (ESJD):

ESJD := EX∼πEX̂ |X
[
‖X̂ − X‖2

(
1 ∧ π(X̂)(R2 + ‖X̂‖2)d

π(X)(R2 + ‖X‖2)d

)]
.

THEOREM 5.1. Under the assumptions on the target in Section 5.1, suppose f is not the
standard Gaussian density, the SPS chain is in the stationary phase, and the radius parameter
is chosen as R = √

d and reparameterize h by ℓ according to equation (15) with λ = 1. Then,

as d → ∞, we have ESJD → 2ℓ2 · �(− ℓ
2

√
Ef [((logf )′)2] − 1).

PROOF. See the Supplementary Material (Yang, Łatuszyński and Roberts (2024), S8.10).
�
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Algorithm 4: Revised Stereographic Projection Sampler (RSPS)

• Let the current state be Xd(t) = x;
• Compute the proposal X̂:

– Let z := SP−1(x);
– Sample independently dz̃′,dz̃′′ ∼ N (0, h2Id+1);

– Let dz′ := dz̃ − (zT ·dz̃′)z
‖z‖2 and dz′′ := dz̃ − (zT ·dz̃′′)z

‖z‖2 ;

– Let ẑ′ := z+dz′
‖z+dz′‖ and ẑ′′ := z+dz′′

‖z+dz′′‖ ;

– Two independent proposals X̂′ := SP(ẑ′) and X̂′′ := SP(ẑ′′);
– The proposal X̂ := (X̂′

1, X̂
′′
2:d).

• Xd(t + 1) = X̂ with probability 1 ∧ π(X̂)(R2+‖X̂‖2)d

π(x)(R2+‖x‖2)d
; otherwise Xd(t + 1) = x.

COROLLARY 5.2. The maximum ESJD is approximately 1.3
Ef [((logf )′)2]−1

, which is

achieved when the acceptance rate is about 0.234. The optimal ℓ̂ ≈ 2.38√
Ef [((logf )′)2]−1

and

the optimal ĥ = 1√
d−1

[(1 − ℓ̂2

2d
)−2 − 1]1/2 ≈ ℓ̂√

d(d−1)
≈ 2.38√

d(d−1)

1√
Ef [((logf )′)2]−1

.

REMARK 5.4. Compared with the maximum ESJD of RWM, the maximum ESJD of

SPS is Ef [((logf )′)2]
Ef [((logf )′)2]−1

times larger. For example, for the class of distributions defined in

Remark 5.1 indexed by ν, we can compute Cν/(Cν − 1). See Table 1 for examples of
Cν/(Cν − 1) for different ν. One can see that the maximum ESJD of SPS can be much
larger than the maximum ESJD of RWM even for a medium size of ν.

5.5. Diffusion limit. Continuing our analogy to the Euclidean RWM case, we shall pro-
vide a diffusion limit result, giving a more explicit description of SPS for high-dimensional
situations. However, it is difficult to obtain a diffusion limit directly for SPS. Instead, we
shall slightly change the original SPS algorithm in a way that is asymptotically negligible
(as d gets large) but which greatly facilitates our limiting diffusion approach. The revised
algorithm, Algorithm 4, is called RSPS.

Note that the difference between SPS and RSPS is that in RSPS two independent proposals
X̂′ and X̂′′ are first computed. Then the final proposal is composed by the first coordinate of
X̂′ and other coordinates of X̂′′, that is, X̂ := (X̂′

1, X̂
′′
2:d). This design guarantees X̂1 is inde-

pendent with X̂2:d conditional on the current state, which is the technical condition needed to
prove the following result on a diffusion limit.

THEOREM 5.2. Under the assumptions on π in Section 5.1, suppose f is not the standard
Gaussian density and the RSPS chain {Xd(t)} starts from the stationarity, that is, Xd(0) ∼ π ,
and the radius parameter is chosen as R = √

d . Writing Xd(t) = (Xd
1 (t), . . . ,Xd

d (t)), we let
Ud(t) := Xd

1 (�dt�) be the sequence of the first coordinates of {Xd(t)} sped-up by a factor
of d . Then, as d → ∞, we have Ud ⇒ U , where ⇒ denotes weak convergence in Skorokhod
topology, and U satisfies the following Langevin SDE:

dU(t) = (
s(ℓ)

)1/2 dB(t) + s(ℓ)
f ′(U(t))

2f (U(t))
dt,

where s(ℓ) := 2ℓ2�(−ℓ

√
Ef [((logf )′)2]−1

2 ) is the speed measure for the diffusion process, and
�(·) being the standard Gaussian cumulative density function.
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PROOF. See the Supplementary Material (Yang, Łatuszyński and Roberts (2024), S8.11).
�

COROLLARY 5.3. The optimal acceptance rate for RSPS is 0.234 and the maximum
speed of the diffusion limit is s(ℓ̂) ≈ 1.3

Ef [((logf )′)2]−1
where ℓ̂ ≈ 2.38√

Ef [((logf )′)2]−1
. The opti-

mal ĥ = 1√
d−1

[(1 − ℓ̂2

2d
)−2 − 1]1/2 ≈ ℓ̂√

d(d−1)
≈ 2.38√

d(d−1)

1√
Ef [((logf )′)2]−1

.

REMARK 5.5. Compared with the maximum speed of the diffusion limit of RWM
(Roberts, Gelman and Gilks (1997)), the maximum speed of the diffusion limit of RSPS

is Ef [((logf )′)2]
Ef [((logf )′)2]−1

times larger.

REMARK 5.6. A reasonable conjecture is that the same diffusion limit holds for the orig-
inal SPS algorithm. In order to establish the same diffusion limit, if we follow the same
arguments as in the proof of Theorem 5.1, it is required to show the acceptance rate term be-
comes “asymptotically independent” with the first coordinate as a rate of O(d−1/2). However,
our current technical arguments in Theorem 5.1 can achieve a rate of O(d−1/8) which is not
enough for establishing the weak convergence to a diffusion limit. Therefore, we only prove
the diffusion limit for RSPS in this paper and leave the proof for SPS as an open problem.

6. Simulations. In this section, we study the proposed SPS and SBPS through numerical
examples. In most of the examples, we consider d = 100 dimensions and two choices of target
distributions, the heavy-tailed multivariate Student’s t target with d degree of freedom and
the standard Gaussian target. By default, we choose R = √

d for SPS and SBPS. We refer
to Yang, Łatuszyński and Roberts (2024), S9, for additional simulations such as different
choices of R.

6.1. SPS: Bayesian Cauchy regression. Here we return to Example 1.1. In Figure 1, we
choose a = b = 0.1, d = 11, n = 15, and R = √

d . Random design Xi ∼ N (0, I ) ∈ R
d

and responses {Yi}ni=1 are generated by Yi = α0 + βT
0 Xi + εi where α0 = −2, β0 =

(−4,−3,−2,−1,0,1,2,3,4)T , {εi} are i.i.d. zero-mean Cauchy distribution with scale
γ0 = 1. We take a logarithm transformation for γ and implement both SPS and RWM in R

d .
RWM starts from (100,100, . . . ,100) and SPS starts from the North Pole. From the figure,
one can see clearly that: (1) RWM which is not geometric ergodic completely failed; (2) the
proposed SPS which is uniformly ergodic converged extremely fast.

6.2. SPS: ESJD per dimension. In this example, we study the ESJD for SPS and its
robustness to the choice of the radius R. We first tune the proposal stepsize h of SPS to get
different acceptance rates. Then we plot ESJD per dimension for varying acceptance rates
as the efficiency curve of SPS. Figure 5 shows eight efficiency curves for different choices
of R. The target distribution is multivariate Student’s t distribution with d = 100 degrees of
freedom. In this setting, R = √

d is optimal. The four subplots in the first column are for
R <

√
d and the second column contains four cases of R >

√
d .

Although we do not plot the ESJD for RWM, the maximum ESJD per dimension for RWM
is known to have an order of O(d−1). In all cases in Figure 5, SPS has a much larger ESJD
than RWM. For the two subplots in the first row of Figure 5, since R is closer to

√
d , the

acceptance rate cannot be lower than 0.5 whatever the proposal variance is. For all the other
efficiency curves, an interesting observation is that the maximum ESJDs are always achieved
when the acceptance rate is around 0.234. This suggests the optimal acceptance rate 0.234 is
quite robust and not limited to product i.i.d. targets, which is similar to the case of optimal
acceptance rate 0.234 for RWM (Yang, Roberts and Rosenthal (2020)).
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FIG. 5. Efficiency Curves (ESJD per dimension) as functions of the acceptance rate of SPS for different choices
of R. Target distribution is multivariate Student’s t distribution with DoF = d = 100. When R is close to

√
d

(such as R = 0.9
√

d and R = 1.1
√

d), the acceptance rate is always larger than 0.234.

6.3. SBPS: ESS per switch. In this example, we study the efficiency curves of SBPS
and BPS in terms of ESS per Switch versus the refresh rate. The first subplot of Figure 6
contains the proportion of refreshments in all the N events for varying refresh rates. It is
clear that as the refresh rate increases, the proportion of refreshments increases. In the other
three subplots of Figure 6, we plot the logarithm of ESS per Switch as a function of the
refresh rate for three cases, the 1st coordinate, the negative log-density, and the squared 1st
coordinate, respectively. For each efficiency curve, N = 1000 events are simulated. We use
random initial states for our SBPS. For comparison, BPS starts from stationarity to avoid slow
mixing. As SBPS and BPS are continuous-time processes, each unit time period is discretized
into 5 samples. The target is standard Gaussian with d = 100. We refer to Yang, Łatuszyński
and Roberts (2024), S9, for additional efficiency curves for heavy-tailed targets.

According to Figure 6, the ESS per Switch of SBPS is much larger than the ESS per Switch
of BPS for all cases (actually the gap becomes larger in higher dimensions). For both the 1st
coordinate and the negative log-target density, the ESS per Switch of SBPS can be larger
than 1 if the refresh rate is relatively low. For BPS, however, even starting from stationarity,
the ESS per Switch is always much smaller than 1.

7. Discussion. We have explored the use of stereographically projected algorithms and
developed SPS and SBPS that are uniformly ergodic for a large class of light and heavy-tailed
targets and also exhibit fast convergence in high-dimensions. The framework established
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FIG. 6. Efficiency curves (ESS per Switch) for SBPS and BPS for varying refresh rate. N = 1000 events are
simulated, Random initial values for SBPS and BPS starting from stationarity. Each unit time is discretized to 5
samples. Target distribution: standard Gaussian with d = 100. The first subplot is the proportion of refreshment
events in all N events. The other three subplots are ESS for the 1st coordinate, the negative log density, and the
squared 1st coordinate.

opens new opportunities for developing MCMC algorithms for sampling high-dimensional
and/or heavy-tailed distributions. We finish the paper with some future directions.

• Adaptive MCMC: the proposed GSPS algorithm fits the adaptive MCMC framework very
well (Roberts and Rosenthal (2009)). The tuning parameters of GSPS such as the covari-
ance matrix, the location as well as the radius of the sphere can be tuned adaptively. Em-
pirical study of the sensitivity of GSPS to the tuning parameters and extending GSPS for
sampling multimodal distributions (Pompe, Holmes and Łatuszyński (2020)) are important
future directions.

• Quantitative bounds: we know SPS is uniform ergodicity for a large class of targets and
dimension-free for isotropic targets. However, we do not establish quantitative bounds for
the mixing time. The quantitative bound and its dimension dependence (e.g., Yang and
Rosenthal (2023)) would be an interesting direction for future work.

• Scaling limit for SBPS: we know SBPS is dimension-free for isotropic targets. For prod-
uct i.i.d. targets, we establish optimal scaling results for SPS but not for SBPS. Recently,
scaling limits for the traditional BPS have been developed in different settings (Bierkens,
Kamatani and Roberts (2022), Deligiannidis et al. (2021)). It would be interesting to obtain
such scaling limits for SBPS for nonisotropic targets to compare with BPS directly.

• Stereographic MALA, HMC, and others: another future direction is to develop new MCMC
samplers based on other popular MCMC algorithms, such as (Riemann) MALA and
Hamiltonian Monte Carlo (HMC) (Girolami and Calderhead (2011)) and other PDMPs,
or based on other mappings from R

d to S
d than the (generalized) stereographic projection.
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