

Stereographic Barker's MCMC Proposal

Jun Yang

University of Copenhagen

UNIVERSITY OF COPENHAGEN

• Stereographic Barker's MCMC Proposal: Efficiency and Robustness at Your Disposal, ongoing work.

Figure: Cameron Bell, Krys Łatuszyński, Gareth Roberts, Jeffrey Rosenthal

- Ergodicity: Geometric Ergodicity (or Uniform Ergodicity)
- Scaling with d: Expected Squared Jumping Distance (ESJD)
- Robustness: to tuning parameters and to heavy/super-light tail

Outline

- Examples of gradient-based MCMC:
 - Unadjusted Langevin Algorithm (ULA or LMC)
 - Metropolis-adjusted Langevin Algorithm (MALA)
 - Barker's proposal (Livingstone and Zanella'22)
- Stereographic MCMC
 - Stereographic Projection Sampler (SPS)
 - Stereographic Barker's proposal (NEW!)
- Expected properties (ongoing work)
 - Ergodicity: uniform ergodicity for heavy-tail targets
 - Best scenario: "blessings of dimensionality"
 - Scaling with d: improve from SPS's $\mathcal{O}(d)$ to MALA's $\mathcal{O}(d^{1/3})$
 - Robustness: combine the robustness of SPS and Barker

Unadjusted Langevin Algorithm (ULA)

• Euler-Maruyama discretization of Langevin diffusion

$$X(t+1) = X(t) + \frac{h^2}{2} \nabla \log \pi(X(t)) + Z, \quad Z \sim \mathcal{N}(0, h^2 I_d)$$

Popular in ML theory community

"bad" properties of ULA (Roberts and Tweedie'96)

- Stationary distribution is not π
 - Heavy tail: ULA is not geometric ergodic
 - Super-light tail: ULA is transient (oscillation, over-corrects the tail)
 - Sensitive to tuning: e.g., if π is standard Gaussian then ULA may be oscillating if $h^2 > 2$.

$$X(t+1) = (1-h^2/2)X(t) + Z, Z \sim \mathcal{N}(0, h^2I_d)$$

Metropolis-adjusted Langevin Algorithm (MALA)

• ULA as proposal Y, then accept the proposal with prob

$$\alpha(x,y) = \min \left\{ 1, \frac{\pi(y)}{\pi(x)} \frac{q(y,x)}{q(x,y)} \right\}$$

• Optimal scaling: $\mathcal{O}(d^{1/3})$ (Roberts and Rosenthal'98)

"bad" properties of MALA (Roberts and Tweedie'96)

- Heavy tail: MALA is not geometric ergodic
- Super-light tail: not geometric ergodic if ULA is transient
- Sensitive to tuning (Livingstone and Zanella'22)

Sensitivity to tuning of MALA

Figure: from (Livingstone and Zanella'22, supplemental material)

"Robust" MALA

MATLA (Roberts and Tweedie'96), tamed MALA (Brosse et.al.'18), Barker's proposal (Livingstone and Zanella'22)

One dimensional Barker's proposal (Livingstone and Zanella'22)

- Sample $Z \sim \mathcal{N}(0, h^2)$
- Proposal Y = X + Z with probability $\frac{1}{1 + \exp(-Z(\log \pi(x))')}$
- Proposal Y = X Z with residual probability.

Figure: from (Livingstone and Zanella'22, supplemental material)

Barker matches ULA "locally" (the first order).

• Sample $Z \sim \mathcal{N}(0, h^2 I_d)$;

UNIVERSITY OF COPENHAGEN

- Proposal Y = X + Z with probability $\frac{1}{1 + \exp(-Z \cdot \nabla \log \pi(x))}$;
- Proposal Y = X Z with residual probability.

High dimensions: coordinate-wise Barker

- Sample $Z_i \sim \mathcal{N}(0, h^2)$, i = 1, ..., d; $Y_i = X_i + Z_i$ with probability $\frac{1}{1 + \exp(-Z_i \frac{\partial \log \pi(x)}{\partial x_i})}$ for each i;
- $Y_i = X_i Z_i$ with residual probability.

Figure: from (Livingstone and Zanella'22, supplemental material)

Properties of coordinate-wise Barker

- Optimal scaling $\mathcal{O}(d^{1/3})$ ESJD smaller by a ratio $15^{1/3} \approx 2.47$ (Vogrinc et.al.'23, for Gaussian)
- Heavy tail: not geometrically ergodic
- Robustness to tuning and super-light tail

Figure: from (Hird, Livingstone, and Zanella 20)

Stereographic MCMC: map \mathbb{R}^d to \mathbb{S}^d

• Y., Łatuszyński and Roberts, Stereographic Markov Chain Monte Carlo, AoS 2024.

• Stereographic Projection (bijection: $\mathbb{R}^d \cup \{\infty\} \longleftrightarrow \mathbb{S}^d$).

Stereographic Projection Sampler (SPS)

- Let the current state be X(t) = x;
- Compute the proposal Y:
 - Let $z := SP^{-1}(x)$;
 - Sample independently $d\tilde{z} \sim \mathcal{N}(0, \frac{h^2}{l_{d+1}});$
 - Let $dz := d\tilde{z} \frac{(z^T \cdot d\tilde{z})z}{\|z\|^2}$ and $\hat{z} := \frac{z + dz}{\|z + dz\|}$;

- The proposal $Y := SP(\hat{z})$.
- X(t+1) = Y with prob. $1 \wedge \frac{\pi(Y)(R^2 + ||Y||^2)^d}{\pi(X)(R^2 + ||X||^2)^d}$; or X(t+1) = X.

SPS versus Random-walk Metropolis (RWM)

Ergodicity

- SPS is uniformly ergodic for sub-Cauchy-tail targets (with Grazzi)
- RWM is not geometrically ergodic for any heavy-tailed target.

Convergence Bounds and Optimal Scaling

- SPS: $\mathcal{O}(1) \sim \mathcal{O}(d^2)$ for heavy-tailed targets (with Milinanni)
- Maximum ESJD $\mathcal{O}(d)$: SPS is never worse than RWM

Robustness

- Both RWM and SPS are robust to super-light-tailed targets
- RWM is robust to tuning (stepsize *h*)
- SPS is even more robust to tuning than RWM (h, radius R, and location of the sphere)

Robustness to tuning of SPS

Theorem (Y., Łatuszyński, and Roberts)

$$\frac{\mathsf{max}_h \, \mathsf{ESJD}_{\mathsf{SPS}}}{\mathsf{max}_h \, \mathsf{ESJD}_{\mathsf{RWM}}} = \frac{1}{1 - \alpha \cdot \beta \cdot \gamma}, \quad \alpha, \beta, \gamma \in [0, 1]$$

- $\alpha = \frac{4\lambda}{(1+\lambda)^2}$ (penalty for misspecified radius $R = \sqrt{\lambda \mathbb{E}_{\pi}[||X||^2]}$);
- $\beta = \frac{\text{Var}(X)}{\mathbb{E}[X^2]}$ (penalty for mislocating the sphere);
- γ distribution-specific penalty ($\gamma=1$ for isotropy).

The optimal acceptance rate for SPS is also 0.234.

Motivation of Stereographic (coord-wise) Barker

Efficiency and Robustness						
	scaling	heavy tail	super-light tail	robust to tuning		
RWM	$\mathcal{O}(d)$	X	✓	✓		
SPS	$\mathcal{O}(d)$	✓	✓	✓		
ULA	Х	X	X	X		
MALA	$\mathcal{O}(d^{1/3})$	×	X	X		
naive Barker	$\mathcal{O}(d)$	X	✓	✓		
coord Barker	$\mathcal{O}(d^{1/3})$	X	✓	✓		

• Stereographic MALA or naive Barker is trivial (and not desirable)

Stereographic gradient-based MCMC

• Stereographic MALA or naive Barker is trivial (and not desirable)

Roadblocks for Stereographic coordinate-wise Barker

- no global coordinate system on sphere
- how to choose a "good" local coordinate system?
- avoid computing basis vectors (matrix multiplication/inversion)

Stereographic gradient-based MCMC

• Stereographic MALA or naive Barker is trivial (and not desirable)

Roadblocks for Stereographic coordinate-wise Barker

- no global coordinate system on sphere
- how to choose a "good" local coordinate system?
- avoid computing basis vectors (matrix multiplication/inversion)

Solution: Givens/Rodrigues' rotation formula

Given n_1 and n_2 are orthonormal, the rotation matrix in d-dimension, which right-hand-rotates by an angle θ in the space spanned by n_1 and n_2 , is given by

$$I_d + (n_2 n_1^T - n_1 n_2^T) \sin(\theta) + (n_1 n_1^T + n_2 n_2^T) [\cos(\theta) - 1]$$

Intermediate algorithm: rotate Barker in \mathbb{R}^d

Figure: rotate Barker in \mathbb{R}^d by one Givens rotation

Intermediate algorithm: rotate Barker in \mathbb{R}^d

Figure: rotate Barker recovers the maximum ESJD of MALA

Final algorithm: stereo Barker

Figure: Stereo Barker by two Givens rotations

Simulation of Stereographic Barkers and MALA

Figure: Starting from South Pole, Gaussian target in 100 dimensions.

Simulation of Stereographic Barkers and MALA

Figure: Starting from nbhd of North Pole, same target.

Summary (including ongoing work)

Efficiency and Robustness						
	scaling	heavy tail	super-light tail	robust to tuning		
RWM	$\mathcal{O}(d)$	X	✓	✓		
SPS	$\mathcal{O}(d)$	✓	✓	✓		
ULA	X	X	X	X		
MALA	$\mathcal{O}(d^{1/3})$	×	X	X		
naive Barker	$\mathcal{O}(d)$	×	✓	✓		
coord Barker	$\mathcal{O}(d^{1/3})$	X	✓	✓		
rotate Barker	$\mathcal{O}(d^{1/3})$	Х	✓	✓		
stereo Barker	$\mathcal{O}(d^{1/3})$	✓	✓	✓		

Thank you!